首页> 外文期刊>Nature >Predicting disruptive instabilities in controlled fusion plasmas through deep learning
【24h】

Predicting disruptive instabilities in controlled fusion plasmas through deep learning

机译:通过深度学习预测受控聚变等离子体中的破坏性不稳定性

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Nuclear fusion power delivered by magnetic-confinement tokamak reactors holds the promise of sustainable and clean energy(1). The avoidance of large-scale plasma instabilities called disruptions within these reactors(2,3) is one of the most pressing challenges(4,5), because disruptions can halt power production and damage key components. Disruptions are particularly harmful for large burning-plasma systems such as the multibillion-dollar International Thermonuclear Experimental Reactor (ITER) project(6) currently under construction, which aims to be the first reactor that produces more power from fusion than is injected to heat the plasma. Here we present a method based on deep learning for forecasting disruptions. Our method extends considerably the capabilities of previous strategies such as first-principles-based(5) and classical machine-learning(7-11) approaches. In particular, it delivers reliable predictions for machines other than the one on which it was trained-a crucial requirement for future large reactors that cannot afford training disruptions. Our approach takes advantage of high-dimensional training data to boost predictive performance while also engaging supercomputing resources at the largest scale to improve accuracy and speed. Trained on experimental data from the largest tokamaks in the United States (DIII-D-12) and the world (Joint European Torus, JET(13)), our method can also be applied to specific tasks such as prediction with long warning times: this opens up the possibility of moving from passive disruption prediction to active reactor control and optimization. These initial results illustrate the potential for deep learning to accelerate progress in fusion-energy science and, more generally, in the understanding and prediction of complex physical systems.
机译:磁约束托卡马克反应堆提供的核聚变能有望带来可持续和清洁的能源(1)。在这些反应堆中避免大规模的等离子体不稳定性(称为中断)是最紧迫的挑战之一(4,5),因为中断会导致发电中断并损坏关键组件。中断对大型燃烧等离子系统尤其有害,例如目前正在建设的数十亿美元的国际热核实验堆(ITER)项目(6),该项目旨在成为第一个通过聚变产生比注入热能产生更多能量的反应堆。等离子体。在这里,我们提出了一种基于深度学习的预测中断的方法。我们的方法大大扩展了先前策略的功能,例如基于第一原理的方法(5)和经典机器学习(7-11)方法。尤其是,它为受训的机器以外的机器提供了可靠的预测,这是无法承受训练中断的未来大型反应堆的一项关键要求。我们的方法利用了高维训练数据来提高预测性能,同时还使用最大规模的超级计算资源来提高准确性和速度。根据来自美国(DIII-D-12)和世界上最大的托卡马克(联合欧洲圆环,JET(13))的实验数据进行训练,我们的方法也可以应用于特定任务,例如警告时间长的预测:这为从被动破坏预测转向主动反应堆控制和优化提供了可能性。这些初步结果说明了深度学习在加速聚变能科学以及更广泛的理解和预测复杂物理系统方面的潜力。

著录项

  • 来源
    《Nature》 |2019年第7753期|526-531|共6页
  • 作者单位

    Harvard Univ, Dept Phys, Cambridge, MA 02138 USA|Harvard Univ, Program Evolutionary Dynam, Cambridge, MA 02138 USA|Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA;

    Princeton Univ, Princeton Inst Computat Sci & Engn, Princeton, NJ 08544 USA|Microsoft, One Microsoft Way, Redmond, WA USA;

    Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA|Princeton Univ, Princeton Inst Computat Sci & Engn, Princeton, NJ 08544 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号