首页> 外文期刊>Nature >Protein-folding location can regulate manganese-binding versus copper- or zinc-binding
【24h】

Protein-folding location can regulate manganese-binding versus copper- or zinc-binding

机译:蛋白质折叠位置可调节锰结合与铜或锌结合

获取原文
获取原文并翻译 | 示例
       

摘要

Metals are needed by at least one-quarter of all proteins. Although metallochaperones insert the correct metal into some proteins, they have not been found for the vast majority, and the view is that most metalloproteins acquire their metals directly from cellular pools. However, some metals form more stable complexes with proteins than do others. For instance, as described in the Irving-Williams series, Cu~(2+) and Zn~(2+) typically form more stable complexes than Mn~(2+). Thus it is unclear what cellular mechanisms manage metal acquisition by most nascent proteins. To investigate this question, we identified the most abundant Cu~(2+)-protein, CucA (Cu~(2+)-cupin A), and the most abundant Mn~(2+)-protein, MncA (Mn~(2+)-cupin A), in the periplasm of the cyanobacterium Synechocystis PCC 6803. Each of these newly identified proteins binds its respective metal via identical ligands within a cupin fold. Consistent with the Irving-Williams series, MncA only binds Mn~(2+) after folding in solutions containing at least a 104 times molar excess of Mn~(2+) over Cu~(2+) or Zn~(2+). However once MncA has bound Mn~(2+), the metal does not exchange with Cu~(2+). MncA and CucA have signal peptides for different export pathways into the periplasm, Tat and Sec respectively. Export by the Tat pathway allows MncA to fold in the cytoplasm, which contains only tightly bound copper or Zn~(2+) (refs 10-12) but micromolar Mn~(2+) (ref. 13). In contrast, CucA folds in the periplasm to acquire Cu~(2+). These results reveal a mechanism whereby the compartment in which a protein folds overrides its binding preference to control its metal content. They explain why the cytoplasm must contain only tightly bound and buffered copper and Zn~(2+).
机译:所有蛋白质中至少有四分之一需要金属。尽管金属伴侣蛋白将正确的金属插入到某些蛋白质中,但绝大多数尚未发现它们,并且认为大多数金属蛋白直接从细胞库中获取金属。但是,某些金属会比其他金属与蛋白质形成更稳定的复合物。例如,如Irving-Williams系列中所述,Cu〜(2+)和Zn〜(2+)通常形成比Mn〜(2+)更稳定的络合物。因此,目前尚不清楚什么细胞机制可以控制大多数新生蛋白质的金属捕获。为了调查此问题,我们确定了最丰富的Cu〜(2+)蛋白CucA(Cu〜(2 +)-cupin A)和最丰富的Mn〜(2+)蛋白MncA(Mn〜( 2 +)-cupin A),在蓝藻细菌PCC 6803的周质中。这些新近鉴定出的蛋白质中的每一个都通过cupin折叠内的相同配体结合其各自的金属。与Irving-Williams系列一致,MncA在含有至少比Cu〜(2+)或Zn〜(2+)摩尔过量104倍的Mn〜(2+)的溶液中折叠后才结合Mn〜(2+)。 。但是,一旦MncA与Mn〜(2+)结合,金属就不会与Cu〜(2+)交换。 MncA和CucA的信号肽分别用于进入周质的不同输出途径,即Tat和Sec。通过Tat途径的输出允许MncA在细胞质中折叠,其中仅包含紧密结合的铜或Zn〜(2 +)(参考文献10-12),而微摩尔Mn〜(2 +)(参考文献13)。相反,CucA在周质中折叠以获得Cu〜(2+)。这些结果揭示了一种机制,在该机制下,蛋白质折叠所在的区域将覆盖其结合偏好,从而控制其金属含量。他们解释了为什么细胞质必须只包含紧密结合和缓冲的铜和Zn〜(2+)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号