首页> 外文期刊>Nature >Optical Manipulation Of Nanoparticles And Biomolecules In Sub-wavelength Slot Waveguides
【24h】

Optical Manipulation Of Nanoparticles And Biomolecules In Sub-wavelength Slot Waveguides

机译:亚波长缝隙波导中纳米粒子和生物分子的光学操纵

获取原文
获取原文并翻译 | 示例
       

摘要

The ability to manipulate nanoscopic matter precisely is critical for the development of active nanosystems. Optical tweezers are excellent tools for transporting particles ranging in size from several micrometres to a few hundred nanometres. Manipulation of dielectric objects with much smaller diameters, however, requires stronger optical confinement and higher intensities than can be provided by these diffraction-limited systems. Here we present an approach to optofluidic transport that overcomes these limitations, using sub-wavelength liquid-core slot waveguides. The technique simultaneously makes use of near-field optical forces to confine matter inside the waveguide and scattering/adsorption forces to transport it. The ability of the slot waveguide to condense the accessible electromagnetic energy to scales as small as 60 nm allows us also to overcome the fundamental diffraction problem. We apply the approach here to the trapping and transport of 75-nm dielectric nanoparticles and λ-DNA molecules. Because trapping occurs along a line, rather than at a point as with traditional point traps, the method provides the ability to handle extended biomolecules directly. We also carry out a detailed numerical analysis that relates the near-field optical forces to release kinetics. We believe that the architecture demonstrated here will help to bridge the gap between optical manipulation and nanofluidics.
机译:精确操纵纳米物质的能力对于活性纳米系统的发展至关重要。光学镊子是传输大小从几微米到几百纳米的颗粒的极好的工具。然而,与这些衍射极限系统所提供的相比,操纵直径小得多的介电物体需要更强的光学限制和更高的强度。在这里,我们提出一种使用亚波长液芯缝隙波导的克服了这些限制的光流传输方法。该技术同时利用近场光学力将物质限制在波导内部,并利用散射/吸附力进行传输。缝隙波导将可访问的电磁能量浓缩至60 nm的能力使我们也能够克服基本的衍射问题。我们在这里将方法应用于75 nm介电纳米颗粒和λ-DNA分子的捕获和运输。因为捕获是沿着一条线进行的,而不是像传统的点陷阱那样在某个点进行,所以该方法提供了直接处理扩展的生物分子的能力。我们还进行了详细的数值分析,将近场光学力与释放动力学联系起来。我们相信,此处演示的架构将有助于弥合光学操作和纳米流体之间的差距。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号