首页> 外文期刊>Nature >Preparation and measurement of three-qubit entanglement in a superconducting circuit
【24h】

Preparation and measurement of three-qubit entanglement in a superconducting circuit

机译:超导电路中三量子位纠缠的制备和测量

获取原文
获取原文并翻译 | 示例
           

摘要

Traditionally, quantum entanglement has been central to founda-tional discussions of quantum mechanics. The measurement of correlations between entangled particles can have results at odds with classical behaviour. These discrepancies grow exponentially with the number of entangled particles. With the ample experimental confirmation of quantum mechanical predictions, entanglement has evolved from a philosophical conundrum into a key resource for technologies such as quantum communication and computation. Although entanglement in superconducting circuits has been limited so far to two qubits, the extension of entanglement to three, eight and ten qubits has been achieved among spins, ions and photons, respectively. A key question for solid-state quantum information processing is whether an engineered system could display the multi-qubit entanglement necessary for quantum error correction, which starts with tripartite entanglement. Here, using a circuit quantum electrodynamics architecture, we demonstrate deterministic production of three-qubit Greenberger-Horne-Zeilinger (GHZ) states with fidelity of 88 per cent, measured with quantum state tomography. Several entanglement witnesses detect genuine three-qubit entanglement by violating biseparable bounds by 830 ± 80 per cent. We demonstrate the first step of basic quantum error correction, namely the encoding of a logical qubit into a manifold of GHZ-like states using a repetition code. The integration of this encoding with decoding and error-correcting steps in a feedback loop will be the next step for quantum computing with integrated circuits.
机译:传统上,量子纠缠一直是量子力学基础讨论的核心。纠缠粒子之间相关性的测量结果可能与经典行为不符。这些差异随纠缠粒子的数量呈指数增长。随着对量子力学预测的充分实验确认,纠缠已从哲学难题演变为量子通信和计算等技术的关键资源。尽管到目前为止,超导电路中的纠缠仅限于两个量子位,但是在自旋,离子和光子之间,纠缠分别扩展到了三个,八个和十个量子位。固态量子信息处理的一个关键问题是,一个经过工程设计的系统是否可以显示量子纠错所需的多量子位纠缠,纠缠始于三方纠缠。在这里,我们使用电路量子电动力学体系结构,演示了确定性产生的三量子格林伯格(Greenberger-Horne-Zeilinger)(GHZ)态,其保真度为88%,使用量子态层析成像技术进行了测量。多个纠缠证人通过将可分边界限制在830±80%的范围内,从而发现真正的三比特纠缠。我们演示了基本量子误差校正的第一步,即使用重复码将逻辑量子位编码为类似GHZ的状态的流形。这种编码与反馈环路中的解码和纠错步骤的集成将是使用集成电路进行量子计算的下一步。

著录项

  • 来源
    《Nature》 |2010年第7315期|P.574-578|共5页
  • 作者单位

    Departments of Physics and Applied Physics, Yale University, New Haven, Connecticut 06511, USA;

    rnDepartments of Physics and Applied Physics, Yale University, New Haven, Connecticut 06511, USA;

    rnDepartments of Physics and Applied Physics, Yale University, New Haven, Connecticut 06511, USA;

    rnDepartments of Physics and Applied Physics, Yale University, New Haven, Connecticut 06511, USA;

    rnDepartments of Physics and Applied Physics, Yale University, New Haven, Connecticut 06511, USA;

    rnDepartment of Physics and Astronomy and Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada;

    rnDepartments of Physics and Applied Physics, Yale University, New Haven, Connecticut 06511, USA;

    rnDepartments of Physics and Applied Physics, Yale University, New Haven, Connecticut 06511, USA;

    rnDepartments of Physics and Applied Physics, Yale University, New Haven, Connecticut 06511, USA;

    rnDepartments of Physics and Applied Physics, Yale University, New Haven, Connecticut 06511, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号