首页> 外文期刊>Nature >Molecular robots guided by prescriptive landscapes
【24h】

Molecular robots guided by prescriptive landscapes

机译:指令性景观指导的分子机器人

获取原文
获取原文并翻译 | 示例
           

摘要

Traditional robots rely for their function on computing, to store internal representations of their goals and environment and to coordinate sensing and any actuation of components required in response. Moving robotics to the single-molecule level is possible in principle, but requires facing the limited ability of individual molecules to store complex information and programs. One strategy to overcome this problem is to use systems that can obtain complex behaviour from the interaction of simple robots with their environment. A first step in this direction was the development of DNA walkers, which have developed from being non-autonomous to being capable of directed but brief motion on one-dimensional tracks. Here we demonstrate that previously developed random walkers-so-called molecular spiders that comprise a streptavidin molecule as an inert 'body' and three deoxyribozymes as catalytic 'legs'-show elementary robotic behaviour when interacting with a precisely defined environment. Single-molecule microscopy observations confirm that such walkers achieve directional movement by sensing and modifying tracks of substrate molecules laid out on a two-dimensional DNA origami landscape. When using appropriately designed DNA origami, the molecular spiders autonomously carry out sequences of actions such as 'start', 'follow', 'turn' and 'stop'. We anticipate that this strategy will result in more complex robotic behaviour at the molecular level if additional control mechanisms are incorporated. One example might be interactions between multiple molecular robots leading to collective behaviour; another might be the ability to read and transform secondary cues on the DNA origami landscape as a means of implementing Turing-universal algorithmic behaviour.
机译:传统机器人的功能依赖于计算,存储其目标和环境的内部表示以及协调感测以及响应所需的任何组件的致动。从原则上讲,将机器人技术转移到单分子水平是可行的,但需要面对单个分子存储复杂信息和程序的有限能力。解决该问题的一种策略是使用可以从简单机器人与其环境的交互中获得复杂行为的系统。朝这个方向迈出的第一步是发展DNA步行者,这种步行者已经从非自治发展为能够在一维轨道上进行定向但短暂的运动。在这里,我们证明了先前开发的随机步行者,即所谓的分子蜘蛛,它包括链霉亲和素分子作为惰性“体”和三个脱氧核酶作为催化“腿”,它们在与精确定义的环境相互作用时显示出基本的机器人行为。单分子显微镜观察证实,这种步行者通过感测和修改布置在二维DNA折纸景观上的底物分子的轨迹来实现定向运动。当使用适当设计的DNA折纸时,分子蜘蛛会自动执行一系列动作,例如“开始”,“跟随”,“转向”和“停止”。我们预计,如果引入其他控制机制,该策略将在分子水平上导致更复杂的机器人行为。一个例子可能是导致集体行为的多个分子机器人之间的相互作用。另一种可能是能够读取和转换DNA折纸景观上的次要线索,并将其作为实现Turing通用算法行为的一种手段。

著录项

  • 来源
    《Nature》 |2010年第7295期|p.206-210|共5页
  • 作者单位

    Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, USA The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA;

    Department of Chemistry, Single Molecule Analysis Group, University of Michigan, Ann Arbor, Michigan 48109, USA;

    Computation & Neural Systems, California Institute of Technology, Pasadena, California 91125, USA;

    Department of Chemistry, Single Molecule Analysis Group, University of Michigan, Ann Arbor, Michigan 48109, USA Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA;

    Department of Chemistry, Single Molecule Analysis Group, University of Michigan, Ann Arbor, Michigan 48109, USA;

    Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, USA The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA;

    Division of Experimental Therapeutics, Department of Medicine, Columbia University, New York, New York 10032, USA;

    Division of Experimental Therapeutics, Department of Medicine, Columbia University, New York, New York 10032, USA;

    Division of Experimental Therapeutics, Department of Medicine, Columbia University, New York, New York 10032, USA Department of Biomedical Engineering, Columbia University, New York, New York 10032, USA;

    Department of Chemistry, Single Molecule Analysis Group, University of Michigan, Ann Arbor, Michigan 48109, USA;

    Computation & Neural Systems, California Institute of Technology, Pasadena, California 91125, USA Computer Science, California Institute of Technology, Pasadena, California 91125, USA Bioengineering, California Institute of Technology, Pasadena, California 91125, USA;

    Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, USA The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号