首页> 外文期刊>Nature >Orbital excitation blockade and algorithmic cooling in quantum gases
【24h】

Orbital excitation blockade and algorithmic cooling in quantum gases

机译:量子气体中的轨道激发封锁和算法冷却

获取原文
获取原文并翻译 | 示例
       

摘要

Interaction blockade occurs when strong interactions in a confined, few-body system prevent a particle from occupying an otherwise accessible quantum state. Blockade phenomena reveal the underlying granular nature of quantum systems and allow for the detection and manipulation of the constituent particles, be they electrons, spins, atoms or photons. Applications include single-electron transistors based on electronic Coulomb blockade and quantum logic gates in Rydberg atoms. Here we report a form of interaction blockade that occurs when transferring ultracold atoms between orbitals in an optical lattice. We call this orbital excitation blockade (OEB). In this system, atoms at the same lattice site undergo coherent collisions described by a contact interaction whose strength depends strongly on the orbital wavefunctions of the atoms. We induce coherent orbital excitations by modulating the lattice depth, and observe staircase-like excitation behaviour as we cross the interaction-split resonances by tuning the modulation frequency. As an application of OEB, we demonstrate algorithmic cooling of quantum gases: a sequence of reversible OEB-based quantum operations isolates the entropy in one part of the system and then an irreversible step removes the entropy from the gas. This technique may make it possible to cool quantum gases to have the ultralow entropies required for quantum simulation of strongly correlated electron systems. In addition, the close analogy between OEB and dipole blockade in Rydberg atoms provides a plan for the implementation of two-quantum-bit gates in a quantum computing architecture with natural scalability.
机译:当在一个封闭的,少体系统中的强相互作用阻止粒子占据原本可以到达的量子态时,就会发生相互作用阻断。封锁现象揭示了量子系统的潜在颗粒性质,并允许检测和操纵组成粒子,无论是电子,自旋,原子还是光子。应用包括基于电子库仑封锁的单电子晶体管和里德堡原子中的量子逻辑门。在这里,我们报告了一种相互作用阻断的形式,该相互作用阻断是在光学晶格的轨道之间转移超冷原子时发生的。我们称之为轨道激发封锁(OEB)。在该系统中,处于同一晶格位点的原子会经历相干碰撞,这种碰撞由接触相互作用描述,其强度在很大程度上取决于原子的轨道波函数。我们通过调制晶格深度来诱发相干轨道激发,并通过调整调制频率来越过相互作用-分裂共振,观察到阶梯状激发行为。作为OEB的一种应用,我们演示了量子气体的算法冷却:一系列基于可逆OEB的量子运算将系统中一部分的熵隔离开,然后通过不可逆的步骤从气体中去除熵。该技术可以冷却量子气体,使其具有强相关电子系统的量子模拟所需的超低熵。另外,OEB与里德堡原子中的偶极子阻断之间的紧密类比为在具有自然可扩展性的量子计算体系结构中实现两个量子位门提供了一个计划。

著录项

  • 来源
    《Nature》 |2011年第7378期|p.500-503|共4页
  • 作者单位

    Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA;

    Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA;

    Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA;

    Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA;

    Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA;

    Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 02:54:54

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号