首页> 外文期刊>Nature >Room temperature coherent control of defect spin qubits in silicon carbide
【24h】

Room temperature coherent control of defect spin qubits in silicon carbide

机译:室温相干控制碳化硅中缺陷自旋量子位

获取原文
获取原文并翻译 | 示例
       

摘要

Electronic spins in semiconductors have been used extensively to explore the limits of external control over quantum mechanical phenomena1. A long-standing goal of this research has been to identify or develop robust quantum systems that can be easily manipulated, for future use in advanced information and communication technologies2. Recently, a point defect in diamond known as the nitrogen-vacancy centre has attracted a great deal of interest because it possesses an atomic-scale electronic spin state that can be used as an individually addressable, solid-state quantum bit (qubit), even at room temperature3. These exceptional quantum properties have motivated efforts to identify similar defects in other semiconductors, as they may offer an expanded range of functionality not available to the diamond nitrogen-vacancy centre4. Notably, several defects in silicon carbide (SiC) have been suggested as good candidates for exploration, owing to a combination of computational predictions and magnetic resonance data4"10. Here we demonstrate that several defect spin states in the 4H polytype of SiC (4H-SiC) can be optically addressed and coherently controlled in the time domain at temperatures ranging from 20 to 300 kelvin. Using optical and microwave techniques similar to those used with diamond nitrogen-vacancy qubits, we study the spin- l'ground state of each of four inequivalent forms of the neutral carbon-silicon divacancy, as well as a pair of defect spin states of unidentified origin. These defects are optically active near telecommunication wavelengths11, and are found in a host material for which there already exist industrial-scale crystal growth12 and advanced microfabrication techniques13. In addition, they possess desirable spin coherence properties that are comparable to those of the diamond nitrogen-vacancy centre. This makes them promising candidates for various photonic, spintronic and quantum information applications that merge quantum degrees of freedom with classical electronic and optical technologies2'14"17.
机译:半导体中的电子自旋已被广泛用于探索对量子力学现象的外部控制的局限性1。这项研究的长期目标是识别或开发易于操作的健壮量子系统,以供将来在高级信息和通信技术中使用2。最近,金刚石中的一个称为氮空位中心的点缺陷引起了极大的兴趣,因为它具有原子级的电子自旋态,甚至可以用作可单独寻址的固态量子位(qubit),甚至在室温下3。这些出色的量子性质促使人们努力寻找其他半导体中的类似缺陷,因为它们可能会提供金刚石氮空位中心无法提供的扩展功能范围4。值得注意的是,由于结合了计算预测和磁共振数据4“ 10,已建议将碳化硅(SiC)中的几种缺陷作为很好的勘探对象。在这里,我们证明SiC(4H- SiC)可以在20至300开尔文温度下进行时域光学寻址和相干控制。使用类似于金刚石氮空位量子位的光学和微波技术,我们研究了每个SiC的自旋基态中性碳-硅空位的四种不等价形式,以及一对来源不明的缺陷自旋态,这些缺陷在电信波长附近具有光学活性11,并且存在于已经存在工业规模晶体生长的基质材料中12 13.此外,它们还具有与金刚石氮-v相当的理想自旋相干性。中心。这使它们成为各种光子,自旋电子和量子信息应用的有前途的候选者,这些应用将量子自由度与经典电子和光学技术2'14“ 17融合在一起。

著录项

  • 来源
    《Nature》 |2011年第7371期|p.84-87|共4页
  • 作者单位

    Center for Spintronics and Quantum Computation, University of California, Santa Barbara, California 93106, USA;

    Center for Spintronics and Quantum Computation, University of California, Santa Barbara, California 93106, USA;

    Center for Spintronics and Quantum Computation, University of California, Santa Barbara, California 93106, USA;

    Center for Spintronics and Quantum Computation, University of California, Santa Barbara, California 93106, USA;

    Center for Spintronics and Quantum Computation, University of California, Santa Barbara, California 93106, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 02:54:49

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号