...
首页> 外文期刊>Nature >Bioinspired self-repairing slippery surfaces withpressure-stable omniphobicity
【24h】

Bioinspired self-repairing slippery surfaces withpressure-stable omniphobicity

机译:生物启发的自我修复的光滑表面,具有耐压的全疏性

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Creating a robust synthetic surface that repels various liquids would have broad technological implications for areas ranging from biomedical devices and fuel transport to architecture but has proved extremely challenging1. Inspirations from natural non-wetting structures2"6, particularly the leaves of the lotus, have led to the development of liquid-repellent microtextured surfaces that rely on the formation of a stable air-liquid interface7"9. Despite over a decade of intense research, these surfaces are, however, still plagued with problems that restrict their practical applications: limited oleophobicity with high contact angle hysteresis9, failure under pressure10"12 and upon physical damage1'7'11, inability to self-heal and high production cost1'11. To address these challenges, here we report a strategy to create self-healing, slippery liquid-infused porous surface(s) (SLIPS) with exceptional liquid- and ice-repellency, pressure stability and enhanced optical transparency. Our approach-inspired by Nepenthes pitcher plants~13-is conceptually different from the lotus effect, because we use nano/
机译:创建一种坚固的合成表面以排斥各种液体,对于从生物医学设备,燃料运输到建筑的各个领域都将具有广泛的技术意义,但事实证明,该领域极具挑战性1。天然非湿润结构2“ 6的启发,特别是荷叶,已经产生了依靠形成稳定的气-液界面7” 9的拒液微织构表面的发展。尽管进行了十多年的深入研究,但是这些表面仍然困扰着限制其实际应用的问题:疏油性有限,接触角滞后性高9,在压力10“ 12时以及在物理损坏1'7'11时失效,无法自我修复。修复和高昂的生产成本1'11。为应对这些挑战,我们在此报告了一种战略,以创造具有出色的抗液和抗冰性,压力稳定性以及增强的光学性能的自修复,光滑的注液多孔表面(SLIPS)猪笼草猪笼草〜13启发我们的方法在概念上与荷叶效应不同,因为我们使用纳米/

著录项

  • 来源
    《Nature》 |2011年第7365期|p.443-447|共5页
  • 作者单位

    School of Engineering and Applied Sciences, Wyss institute for Biologically Inspired Engineering and Kavli Institute for Bionano Science and Technology. Harvard University, Cambridge, Massachusetts02138, USA;

    School of Engineering and Applied Sciences, Wyss institute for Biologically Inspired Engineering and Kavli Institute for Bionano Science and Technology. Harvard University, Cambridge, Massachusetts02138, USA;

    School of Engineering and Applied Sciences, Wyss institute for Biologically Inspired Engineering and Kavli Institute for Bionano Science and Technology. Harvard University, Cambridge, Massachusetts02138, USA;

    Schlumberger-Doll Research Center, Schlumberger. Cambridge, Massachusetts 02139, USA.;

    School of Engineering and Applied Sciences, Wyss institute for Biologically Inspired Engineering and Kavli Institute for Bionano Science and Technology. Harvard University, Cambridge, Massachusetts02138, USA;

    School of Engineering and Applied Sciences, Wyss institute for Biologically Inspired Engineering and Kavli Institute for Bionano Science and Technology. Harvard University, Cambridge, Massachusetts02138, USA;

    School of Engineering and Applied Sciences, Wyss institute for Biologically Inspired Engineering and Kavli Institute for Bionano Science and Technology. Harvard University, Cambridge, Massachusetts02138, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号