首页> 外文期刊>Nature >Single-ion quantum lock-in amplifier
【24h】

Single-ion quantum lock-in amplifier

机译:单离子量子锁相放大器

获取原文
获取原文并翻译 | 示例
       

摘要

Quantum metrology uses tools from quantum information science to improve measurement signal-to-noise ratios. The challenge is to increase sensitivity while reducing susceptibility to noise, tasks that are often in conflict Lock-in measurement is a detection scheme designed to overcome this difficulty by spectrally separating signal from noise. Here we report on the implementation of a quantum analogue to the classical lock-in amplifier. All the lock-in operations-modulation, detection and mixing-are performed through the application of non-commuting quantum operators to the electronic spin state of a single, trapped Sr~+ ion. We significantly increase its sensitivity to external fields while extending phase coherence by three orders of magnitude, to more than one second. Using this technique, we measure frequency shifts with a sensitivity of 0.42HzHz~(-1/2) (corresponding to a magnetic field measurement sensitivity of 15pTHz~(-1/2)), obtaining an uncertainty of less than 10mHz (350 fT) after 3,720 seconds of averaging. These sensitivities are limited by quantum projection noise and improve on other single-spin probe technologies by two orders of magnitude. Our reported sensitivity is sufficient for the measurement of parity non-conservation4, as well as the detection of the magnetic field of a single electronic spin one micrometre from an ion detector with nanometre resolution. As a first application, we perform light shift spec-troscopy of a narrow optical quadrupole transition. Finally, we emphasize that the quantum lock-in technique is generic and can potentially enhance the sensitivity of any quantum sensor.
机译:量子计量学使用来自量子信息科学的工具来提高测量信噪比。挑战在于提高灵敏度,同时降低对噪声的敏感性,这通常是相互冲突的任务。锁定测量是一种检测方案,旨在通过将信号与噪声进行频谱分离来克服这一困难。在这里,我们报告量子锁模放大器的量子模拟的实现。所有锁定操作的调制,检测和混合都是通过将非交换量子算符应用于单个捕获的Sr〜+离子的电子自旋态来完成的。我们将其对外部场的灵敏度大大提高,同时将相干性提高了三个数量级,达到了一秒以上。使用此技术,我们以0.42HzHz〜(-1/2)的灵敏度测量频移(对应于15pTHz〜(-1/2)的磁场测量灵敏度),获得的不确定度小于10mHz(350 fT )平均3,720秒后。这些灵敏度受到量子投影噪声的限制,并且与其他单旋转探针技术相比提高了两个数量级。我们报道的灵敏度足以用于测量奇偶性非保守性4,以及从具有纳米分辨率的离子检测器检测单个电子自旋一微米的磁场。作为第一个应用程序,我们执行窄光学四极跃迁的光移光谱。最后,我们强调量子锁定技术是通用的,可以潜在地增强任何量子传感器的灵敏度。

著录项

  • 来源
    《Nature》 |2011年第7345期|p.61-65|共5页
  • 作者单位

    Department of Physics of Complex Systems, Weizmann Institute of Science, PO Box 26, Rehovot 76100, Israel;

    Department of Physics of Complex Systems, Weizmann Institute of Science, PO Box 26, Rehovot 76100, Israel;

    Department of Physics of Complex Systems, Weizmann Institute of Science, PO Box 26, Rehovot 76100, Israel;

    Department of Physics of Complex Systems, Weizmann Institute of Science, PO Box 26, Rehovot 76100, Israel;

    Department of Physics of Complex Systems, Weizmann Institute of Science, PO Box 26, Rehovot 76100, Israel;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 02:54:34

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号