首页> 外文期刊>Nature >Magnetic and non-magnetic phases of a quantum spin liquid
【24h】

Magnetic and non-magnetic phases of a quantum spin liquid

机译:量子自旋液体的磁性和非磁性相

获取原文
获取原文并翻译 | 示例
       

摘要

A quantum spin-liquid phase is an intriguing possibility for a system of strongly interacting magnetic units in which the usual magnetically ordered ground state is avoided owing to strong quantum fluctuations. It was first predicted theoretically for a triangular-lattice model with antiferromagnetically coupled S= 1/2 spins~1. Recently, materials have become available showing persuasive experimental evidence for such a state~2. Although many studies show that the ideal triangular lattice of S = 1/2 Heisenberg spins actually orders magnetically into a three-sublattice, non-collinear 120° arrangement, quantum fluctuations significantly reduce the size of the ordered moment~3. This residual ordering can be completely suppressed when higher-order ring-exchange magnetic interactions are significant, as found in nearly metallic Mott insulators~4. The layered molecular system k-(BEDT-TTF)_2Cu_2(CN)_3 is a Mott insulator with an almost isotropic, triangular magnetic lattice of spin-1/2 BEDT-TTF dimers~5 that provides a prime example of a spin liquid formed in this way~(6-11). Despite a high-temperature exchange coupling,J, of 250 K (ref. 6), no obvious signature of conventional magnetic ordering is seen down to 20 mK (refs 7,8). Here we show, using muon spin rotation, that applying a small magnetic field to this system produces a quantum phase transition between the spin-liquid phase and an antiferromagnetic phase with a strongly suppressed moment. This can be described as Bose-Einstein condensation of spin excitations with an extremely small spin gap. At higher fields, a second transition is found that suggests a threshold for deconfinement of the spin excitations. Our studies reveal the low-temperature magnetic phase diagram and enable us to measure characteristic critical properties. We compare our results closely with current theoretical models, and this gives some further insight into the nature of the spin-liquid phase.
机译:对于强相互作用的磁性单元系统来说,量子自旋液相是一种引人入胜的可能性,在该系统中,由于强烈的量子波动,避免了通常的磁性有序基态。它首先在理论上针对反铁磁耦合S = 1/2 spins〜1的三角形晶格模型进行了预测。最近,已经有资料表明这种状态2具有说服力。尽管许多研究表明,理想的S = 1/2海森堡自旋的三角形晶格实际上磁性地排列成三个亚晶格,非共线的120°排列,但量子涨落显着减小了有序矩的大小〜3。当高阶环交换磁相互作用显着时,这种残余有序现象可以被完全抑制,就像在几乎金属的Mott绝缘子中所发现的那样[4]。层状分子系统k-(BEDT-TTF)_2Cu_2(CN)_3是Mott绝缘体,具有自旋1/2 BEDT-TTF二聚体〜5的几乎各向同性的三角形磁晶格,提供了形成的自旋液体的主要示例以这种方式〜(6-11)。尽管有250 K的高温交换耦合J(参考文献6),但在低至20 mK(参考文献7,8)时,仍未见到常规磁序的明显特征。在这里,我们显示了使用μ子自旋旋转,向该系统施加较小的磁场会在自旋液相和反铁磁相之间产生量子相变,并具有很强的抑制力矩。这可以描述为自旋激发的Bose-Einstein凝聚,自旋间隙极小。在较高的磁场中,发现了第二个跃迁,该跃迁暗示了自旋激发的解除约束的阈值。我们的研究揭示了低温磁性相图,使我们能够测量特征性的关键特性。我们将结果与当前的理论模型进行了比较,从而进一步了解了自旋液相的性质。

著录项

  • 来源
    《Nature》 |2011年第7340期|p.612-616|共5页
  • 作者单位

    ISIS Facility, Rutherford Appleton Laboratory, Chilton OX11 OQX, UK;

    ISIS Facility, Rutherford Appleton Laboratory, Chilton OX11 OQX, UK;

    Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford 0X1 3PU, UK;

    Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford 0X1 3PU, UK;

    Neutron Science Section,J-PARC Center, Japan Atomic Energy Agency,2-4 Shirane, Shirakata, Tokai,Ibaraki 319-1195, Japan;

    Paul Scherrer Institut, Laboratory for Muon-Spin Spectroscopy,CH-5232 Villigen, Switzerland;

    Institute for Advanced Research, Nagoya University, Nagoya 464-8601, Japan;

    Department of Applied Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan;

    Meson Science Laboratory,RIKEN,2-1 Hirosawa, Wako, Saitama 351-0198, Japan;

    Division of Chemistry, Graduate School of Science, Kyoto University, Oiwaketyo, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan,Presentaddress: Research Institute, Meijo University, Nagoya 468-8502, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 02:54:33

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号