首页> 外文期刊>Nature >Memory and modularity in cell-fate decision making
【24h】

Memory and modularity in cell-fate decision making

机译:细胞命运决策中的内存和模块化

获取原文
获取原文并翻译 | 示例
       

摘要

致癌小GTP酶K-Ras发生的突变在癌症中普遍存在,使得这种酶成为一个显然的药物目标,但用小分子直接抑制K-Ras功能却被证明是困难的。在这篇论文中,Shokat及同事报告,它们开发出了能不可逆地与K-Ras的常见G12C突变体结合、但却不与野生型蛋白结合的小分子。晶体研究显示了一个"变构穴"的形成,这在以前的Ras结构中并不明显存在;同时这些小分子也改变K-Ras的亲和性,使其更倾向于与GDP而不是GTP亲和。这些发现应能为以这种突变Ras蛋白为目标的药物发现工作提供一个起点。%Genetically identical cells sharing an environment can display markedly different phenotypes. It is often unclear how much of this variation derives from chance, external signals, or attempts by individual cells to exert autonomous pheno- dissect the stochastic decision between a solitary, motile state and a chained, sessile state in Bacillus subtilis. We show that the motile state is 'memoryless', exhibiting no autonomous control over the time spent in the state. In contrast, the time spent as connected chains of cells is tightly controlled, enforcing coordination among related cells in the multicellular state. We show that the three-protein regulatory circuit governing the decision is modular, as initiation and maintenance of chaining are genetically separable functions. As stimulation of the same initiating pathway triggers biofilm formation, we argue that autonomous timing allows a trial commitment to multicellularity that external signals could extend.
机译:致癌小GTP酶K-Ras发生的突变在癌症中普遍存在,使得这种酶成为一个显然的药物目标,但用小分子直接抑制K-Ras功能却被证明是困难的。在这篇论文中,Shokat及同事报告,它们开发出了能不可逆地与K-Ras的常见G12C突变体结合、但却不与野生型蛋白结合的小分子。晶体研究显示了一个"变构穴"的形成,这在以前的Ras结构中并不明显存在;同时这些小分子也改变K-Ras的亲和性,使其更倾向于与GDP而不是GTP亲和。这些发现应能为以这种突变Ras蛋白为目标的药物发现工作提供一个起点。%Genetically identical cells sharing an environment can display markedly different phenotypes. It is often unclear how much of this variation derives from chance, external signals, or attempts by individual cells to exert autonomous pheno- dissect the stochastic decision between a solitary, motile state and a chained, sessile state in Bacillus subtilis. We show that the motile state is 'memoryless', exhibiting no autonomous control over the time spent in the state. In contrast, the time spent as connected chains of cells is tightly controlled, enforcing coordination among related cells in the multicellular state. We show that the three-protein regulatory circuit governing the decision is modular, as initiation and maintenance of chaining are genetically separable functions. As stimulation of the same initiating pathway triggers biofilm formation, we argue that autonomous timing allows a trial commitment to multicellularity that external signals could extend.

著录项

  • 来源
    《Nature》 |2013年第7477期|427481-486|共7页
  • 作者单位

    Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA;

    Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA;

    Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA;

    Department of Molecular and Cellular biology, Harvard University, Cambridge Massachusetts 02138, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 02:53:46

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号