首页> 外文期刊>Nature >Observation of dipolar spin-exchange interactions with lattice - confined polar molecules
【24h】

Observation of dipolar spin-exchange interactions with lattice - confined polar molecules

机译:与晶格受限的极性分子偶极自旋交换相互作用的观察

获取原文
获取原文并翻译 | 示例
       

摘要

With the production of polar molecules in the quantum regime, long-range dipolar interactions are expected to facilitate understanding of strongly interacting many-body quantum systems and to realize lattice spin models for exploring quantum magnetism. In ordinary atomic systems, where contact interactions require wave-function overlap, effective spin interactions on a lattice can be mediated by tunnelling, through a process referred to as super-exchange; however, the coupling is relatively weak and is limited to nearest-neighbour interactions. In contrast, dipolar interactions exist even in the absence of tunnelling and extend beyond nearest neighbours. This allows coherent spin dynamics to persist even for gases with relatively high entropy and low lattice filling. Measured effects of dipolar interactions in ultracold molecular gases have been limited to the modification of inelastic collisions and chemical reactions. Here we use dipolar interactions of polar molecules pinned in a three-dimensional optical lattice to realize a lattice spin model. Spin is encoded in rotational states of molecules that are prepared and probed by microwaves. Resonant exchange of rotational angular momentum between two molecules realizes a spin-exchange interaction. The dipolar interactions are apparent in the evolution of the spin coherence, which shows oscillations in addition to an overall decay of the coherence. The frequency of these oscillations, the strong dependence of the spin coherence time on the lattice filling factor and the effect of a multipulse sequence designed to reverse dynamics due to two-body exchange interactions all provide evidence of dipolar interactions. Furthermore, we demonstrate the suppression of loss in weak lattices due to a continuous quantum Zeno mechanism8. Measurements of these tunnelling-induced losses allow us to determine the lattice filling factor independently. Our work constitutes an initial exploration of the behaviour of many-body spin models with direct, long-range spin interactions and lays the groundwork for future studies of many-body dynamics in spin lattices.%超冷分子气体中的极性分子之间的长距离双极相互作用,允许自旋动态从分子的运动完全解耦,这是实现用于研究量子磁性的晶格自旋模型的一个有吸引力的特点。所测出的这种双极相互作用的效应迄今只限于非弹性碰撞和化学反应的改变。本文作者利用固定在一个三维光晶格中的极性分子的双极相互作用来实现一个晶格自旋模型。他们的结果为用长距离相互作用来实现一系列自旋模型提供了可能性,同时也为未来关于自旋晶格中多体动态的研究工作奠定了基础。
机译:随着量子态中极性分子的产生,长距离偶极相互作用有望促进对强相互作用的多体量子系统的理解,并实现探索量子磁性的晶格自旋模型。在普通的原子系统中,接触相互作用需要波函数重叠,在晶格上有效的自旋相互作用可以通过隧穿来介导,称为超交换。但是,耦合相对较弱,并且仅限于最近的邻居交互。相反,偶极相互作用即使在没有隧道效应的情况下也存在,并延伸到最近的邻居之外。即使对于具有相对较高的熵和较低的晶格填充的气体,这也使相干自旋动力学得以持续。在超冷分子气体中偶极相互作用的测量效果仅限于非弹性碰撞和化学反应的改性。在这里,我们使用固定在三维光学晶格中的极性分子的偶极相互作用来实现晶格自旋模型。自旋以通过微波制备和探测的分子的旋转状态编码。两个分子之间的旋转角动量的共振交换实现了自旋交换相互作用。在自旋相干的演变中,偶极相互作用是显而易见的,它显示了振荡以及相干的整体衰减。这些振荡的频率,自旋相干时间对晶格填充因子的强烈依赖性以及设计用于逆转由于两体交换相互作用而引起的动力学的多脉冲序列的影响,均提供了偶极相互作用的证据。此外,我们证明了由于连续的量子芝诺机理而抑制了弱晶格中的损耗8。这些隧穿引起的损耗的测量值使我们能够独立确定晶格填充因子。我们的工作构成了对具有直接,远距离自旋相互作用的多体自旋模型的行为的初步探索,并为今后研究自旋晶格中的多体动力学奠定了基础。间的长距离双极相互作用,允许自旋动态从分子的运动完全解变量,这是实现研究量子磁性的晶格自旋模型的一个尺度的特点。所测出的这种双极相互作用的效应器恢复到今朝只加入非弹性碰撞和化学反应的改变。本文作者利用固定在一个三维光晶格中的极性分子的双极相互作用来实现一个晶格自旋模型。他们的结果为用长距离相互作用来实现一系列自旋模型提供了可能性,同时也为未来关于自旋晶格中多体动态的研究工作替代了基础。

著录项

  • 来源
    《Nature》 |2013年第7468期|521-525C3|共6页
  • 作者单位

    JlLA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309, USA Department of Physics, University of Colorado, Boulder, Colorado 80309, USA;

    JlLA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309, USA Department of Physics, University of Colorado, Boulder, Colorado 80309, USA;

    JlLA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309, USA Department of Physics, University of Colorado, Boulder, Colorado 80309, USA;

    JlLA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309, USA Department of Physics, University of Colorado, Boulder, Colorado 80309, USA;

    JlLA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309, USA Department of Physics, University of Colorado, Boulder, Colorado 80309, USA;

    JlLA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309, USA Department of Physics, University of Colorado, Boulder, Colorado 80309, USA;

    JlLA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309, USA,Department of Physics, University of Colorado, Boulder, Colorado 80309, USA;

    JlLA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309, USA Department of Physics, University of Colorado, Boulder, Colorado 80309, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 02:53:46

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号