首页> 外文期刊>Nature >Catalytic conversion of nitrogen to ammonia by an iron model complex
【24h】

Catalytic conversion of nitrogen to ammonia by an iron model complex

机译:铁模型配合物将氮催化转化为氨

获取原文
获取原文并翻译 | 示例
       

摘要

The reduction of nitrogen (N_2) to ammonia (NH_3) is a requisite transformation for life1. Although it is widely appreciated that the iron-rich cofactors of nitrogenase enzymes facilitate this transformation, how they do so remains poorly understood. A central element of debate has been the exact site or sites of N_2 coordination and reduction. In synthetic inorganic chemistry, an early emphasis was placed on molybdenum because it was thought to be an essential element of nitrogenases and because it had been established that well-defined molybdenum model complexes could mediate the stoichiometric conversion of N_2 to NH_3 (ref. 9). This chemical transformation can be performed in a catalytic fashion by two well-defined molecular systems that feature molybdenum centres. However, it is now thought that iron is the only transition metal essential to all nitrogenases, and recent biochemical and spectroscopic data have implicated iron instead of molybdenum as the site of N_2 binding in the FeMo-cofactor. Here we describe a tris(phosphine)borane-supported iron complex that catalyses the reduction of N_2 to NH_3 under mild conditions, and in which more than 40 per cent of the proton and reducing equivalents are delivered to N_2. Our results indicate that a single iron site may be capable of stabilizing the various N_xH_y intermediates generated during catalytic NH_3 formation. Geometric tunability at iron imparted by a flexible iron-boron interaction in our model system seems to be important for efficient catalysis. We propose that the interstitial carbon atom recently assigned in the nitrogenase cofactor may have a similar role, perhaps by enabling a single iron site to mediate the enzymatic catalysis through a flexible iron-carbon interaction.
机译:将氮(N_2)还原为氨(NH_3)是生命1的必要转换。尽管人们普遍认识到固氮酶的富铁辅助因子促进了这种转化,但它们如何实现仍知之甚少。辩论的中心要素是N_2协调和还原的确切位置。在合成无机化学中,早期重点放在钼上,因为它被认为是固氮酶的重要元素,并且因为已经确定定义明确的钼模型络合物可以介导N_2到NH_3的化学计量转化(参考文献9)。 。这种化学转化可以通过具有钼中心的两个定义明确的分子系统以催化方式进行。然而,现在认为铁是所有固氮酶必不可少的唯一过渡金属,最近的生物化学和光谱数据表明,铁而不是钼是FeMo辅因子中N_2结合的位点。在这里,我们描述了一种由三(膦)硼烷负载的铁络合物,该络合物在温和条件下催化N_2还原为NH_3,并且其中40%以上的质子和还原当量被传递至N_2。我们的结果表明,单个铁位点可能能够稳定在催化NH_3形成过程中生成的各种N_xH_y中间体。在我们的模型系统中,通过灵活的铁-硼相互作用赋予铁的几何可调谐性对于有效催化似乎很重要。我们建议,最近在硝化酶辅助因子中分配的间隙碳原子可能具有相似的作用,可能是通过使单个铁位点通过柔性的铁碳相互作用介导酶催化而实现的。

著录项

  • 来源
    《Nature》 |2013年第7465期|84-87|共4页
  • 作者单位

    Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA;

    Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA;

    Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 02:53:44

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号