首页> 外文期刊>Nature >Microscopic origin of the '0.7-anomaly' in quantum point contacts
【24h】

Microscopic origin of the '0.7-anomaly' in quantum point contacts

机译:量子点接触中“ 0.7异常”的微观起源

获取原文
获取原文并翻译 | 示例
       

摘要

Quantum point contacts are narrow, one-dimensional constrictions usually patterned in a two-dimensional electron system, for example by applying voltages to local gates. The linear conductance of a point contact, when measured as function of its channel width, is quantized in units of G_Q = 2e~2/h, where e is the electron charge and h is Planck's constant. However, the conductance also has an unexpected shoulder at ~0.7G_Q, known as the'0.7-anomaly', whose origin is still subject to debate. Proposed theoretical explanations have invoked spontaneous spin polarization, ferromagnetic spin coupling, the formation of a quasi-bound state leading to the Kondo effect, Wigner crystallization and various treatments of inelastic scattering. However, explicit calculations that fully reproduce the various experimental observations in the regime of the 0.7-anomaly, including the zero-bias peak that typically accompanies it, are still lacking. Here we offer a detailed microscopic explanation for both the 0.7-anomaly and the zero-bias peak: their common origin is a smeared van Hove singularity in the local density of states at the bottom of the lowest one-dimensional subband of the point contact, which causes an anomalous enhancement in the Hartree potential barrier, the magnetic spin susceptibility and the inelastic scattering rate. We find good qualitative agreement between theoretical calculations and experimental results on the dependence of the conductance on gate voltage, magnetic field, temperature, source-drain voltage (including the zero-bias peak) and interaction strength. We also clarify how the low-energy scale governing the 0.7-anomaly depends on gate voltage and interactions. For low energies, we predict and observe Fermi-liquid behaviour similar to that associated with the Kondo effect in quantum dots. At high energies, however, the similarities between the 0.7-anomaly and the Kondo effect end.
机译:量子点接触是狭窄的一维收缩,通常在二维电子系统中进行构图,例如,通过对局部栅极施加电压。当测量点接触的线性电导作为其沟道宽度的函数时,以G_Q = 2e〜2 / h为单位进行量化,其中e是电子电荷,h是普朗克常数。但是,电导在〜0.7G_Q处有一个意外的肩膀,被称为“ 0.7异常”,其起源尚有争议。提出的理论解释涉及自发自旋极化,铁磁自旋耦合,导致近藤效应的准结合态的形成,维格纳结晶以及非弹性散射的各种处理方法。但是,仍然缺乏明确再现能够完全重现0.7异常状态下各种实验观察结果的计算,包括通常伴随的零偏峰。在这里,我们为0.7异常峰和零偏峰提供了详细的微观解释:它们的共同起源是点接触的最低一维子带底部的状态局部密度中涂上了范霍夫奇异性,这会导致Hartree势垒,磁自旋磁化率和非弹性散射率异常增强。我们在电导对栅极电压,磁场,温度,源极-漏极电压(包括零偏置峰)和相互作用强度的依赖性上,在理论计算和实验结果之间找到了良好的定性一致性。我们还阐明了控制0.7异常的低能级如何取决于栅极电压和相互作用。对于低能量,我们预测并观察到费米液体行为,类似于量子点中近藤效应。然而,在高能量下,0.7异常和近藤效应之间的相似性结束了。

著录项

  • 来源
    《Nature》 |2013年第7465期|73-78|共6页
  • 作者单位

    Center for NanoScience and Fakultat fur Physik, Ludwig-Maximilians-Universitat Munchen, Geschwister-Scholl-Platz 1,80539 Miinchen, Germany,Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universitat Munchen, Theresienstrasse 37, D-80333 Munchen, Germany;

    Center for NanoScience and Fakultat fur Physik, Ludwig-Maximilians-Universitat Munchen, Geschwister-Scholl-Platz 1,80539 Miinchen, Germany,Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universitat Munchen, Theresienstrasse 37, D-80333 Munchen, Germany;

    Center for NanoScience and Fakultat fur Physik, Ludwig-Maximilians-Universitat Munchen, Geschwister-Scholl-Platz 1,80539 Miinchen, Germany;

    Center for NanoScience and Fakultat fur Physik, Ludwig-Maximilians-Universitat Munchen, Geschwister-Scholl-Platz 1,80539 Miinchen, Germany;

    Center for NanoScience and Fakultat fur Physik, Ludwig-Maximilians-Universitat Munchen, Geschwister-Scholl-Platz 1,80539 Miinchen, Germany;

    Center for NanoScience and Fakultat fur Physik, Ludwig-Maximilians-Universitat Munchen, Geschwister-Scholl-Platz 1,80539 Miinchen, Germany,Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universitat Munchen, Theresienstrasse 37, D-80333 Munchen, Germany;

    lnstitut fuer Angewandte Physik, Universitaet Regensburg, D-93040 Regensburg, Germany;

    Laboratory for Solid State Physics, ETH Zurich, CH-8093 Zurich, Switzerland;

    Center for NanoScience and Fakultat fur Physik, Ludwig-Maximilians-Universitat Munchen, Geschwister-Scholl-Platz 1,80539 Miinchen, Germany,Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universitat Munchen, Theresienstrasse 37, D-80333 Munchen, Germany;

    Center for NanoScience and Fakultat fur Physik, Ludwig-Maximilians-Universitat Munchen, Geschwister-Scholl-Platz 1,80539 Miinchen, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 02:53:44

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号