首页> 外文期刊>Nature >The spin Hall effect in a quantum gas
【24h】

The spin Hall effect in a quantum gas

机译:量子气体中的自旋霍尔效应

获取原文
获取原文并翻译 | 示例
           

摘要

Electronic properties such as current flow are generally independent of the electron's spin angular momentum, an internal degree of freedom possessed by quantum particles. The spin Hall effect, first proposed 40 years ago, is an unusual class of phenomena in which flowing particles experience orthogonally directed, spin-dependent forces—analogous to the conventional Lorentz force that gives the Hall effect, but opposite in sign for two spin states. Spin Hall effects have been observed for electrons flowing in spin-orbit-coupled materials such as GaAs and InGaAs (refs 2, 3) and for laser light traversing dielectric junctions. Here we observe the spin Hall effect in a quantum-degenerate Bose gas, and use the resulting spin-dependent Lorentz forces to realize a cold-atom spin transistor. By engineering a spatially inhomogeneous spin-orbit coupling field for our quantum gas, we explicitly introduce and measure the requisite spin-dependent Lorentz forces, finding them to be in excellent agreement with our calculations. This 'atomtronic' transistor behaves as a type of velocity-insensitive adiabatic spin selector, with potential application in devices such as magnetic or inertial sensors. In addition, such techniques for creating and measuring the spin Hall effect are clear prerequisites for engineering topo-logical insulators and detecting their associated quantized spin Hall effects in quantum gases. As implemented, our system realizes a laser-actuated analogue to the archetypal semiconductor spintronic device, the Datta-Das spin transistor.
机译:电子特性(例如电流)通常与电子的自旋角动量无关,自旋角动量是量子粒子所具有的内部自由度。自旋霍尔效应始于40年前,它是一类不寻常的现象,其中流动的粒子会经历正交指向的自旋相关力-与产生霍尔效应的传统洛伦兹力相似,但在两种自旋状态下符号相反。对于在自旋轨道耦合材料(例如GaAs和InGaAs)中流动的电子(参考文献2、3)以及穿过介电结的激光,已经观察到自旋霍尔效应。在这里,我们观察了量子简并的玻色气体中的自旋霍尔效应,并使用所得的自旋相关洛伦兹力实现了冷原子自旋晶体管。通过为量子气体设计空间不均匀的自旋轨道耦合场,我们明确引入并测量了必要的自旋相关洛伦兹力,发现它们与我们的计算非常吻合。这种“原子电子”晶体管表现为一种对速度不敏感的绝热自旋选择器,具有潜在的应用前景,例如磁性或惯性传感器。另外,用于创建和测量自旋霍尔效应的此类技术是工程拓扑绝缘体和检测其在量子气体中的关联自旋霍尔效应的明确前提。实施后,我们的系统实现了原型半导体自旋电子器件Datta-Das自旋晶体管的激光驱动模拟。

著录项

  • 来源
    《Nature》 |2013年第7453期|201-204|共4页
  • 作者单位

    Joint Quantum Institute, National Institute of Standards and Technology and University of Maryland, Gaithersburg, Maryland 20899, USA;

    Joint Quantum Institute, National Institute of Standards and Technology and University of Maryland, Gaithersburg, Maryland 20899, USA;

    Joint Quantum Institute, National Institute of Standards and Technology and University of Maryland, Gaithersburg, Maryland 20899, USA,Departamento de Fisica, Centra de Investigaci6n y Estudios Avanzados del Institute Politecnico Nacional, Mexico D.F. 07360, Mexico. Present addresses: The Johns Hopkins Applied Physics Laboratory, Laurel, Maryland 20723, USA (M.C.B.), National Physical Laboratory, Teddington TW11 OLW, UK (RAW.), The James Franck Institute and Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA (KJ.-G.);

    Joint Quantum Institute, National Institute of Standards and Technology and University of Maryland, Gaithersburg, Maryland 20899, USA;

    Joint Quantum Institute, National Institute of Standards and Technology and University of Maryland, Gaithersburg, Maryland 20899, USA;

    Joint Quantum Institute, National Institute of Standards and Technology and University of Maryland, Gaithersburg, Maryland 20899, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号