首页> 外文期刊>Nature >Porous materials with optimal adsorption thermodynamics and kinetics for CO_2 separation
【24h】

Porous materials with optimal adsorption thermodynamics and kinetics for CO_2 separation

机译:具有最佳吸附热力学和动力学特性的多孔材料,用于CO_2分离

获取原文
获取原文并翻译 | 示例
           

摘要

The energy costs associated with the separation and purification of industrial commodities, such as gases, fine chemicals and fresh water, currently represent around 15 per cent of global energy production, and the demand for such commodities is projected to triple by 2050 (ref. 1). The challenge of developing effective separation and purification technologies that have much smaller energy footprints is greater for carbon dioxide (CO_2) than for other gases; in addition to its involvement in climate change, CO_2 is an impurity in natural gas, biogas (natural gas produced from bio-mass), syngas (CO/H_2, the main source of hydrogen in refineries) and many other gas streams. In the context of porous crystalline materials that can exploit both equilibrium and kinetic selectivity, size selectivity and targeted molecular recognition are attractive characteristics for CO_2 separation and capture, as exemplified by zeolites 5A and 13X (ref. 2), as well as metal-organic materials (MOMs). Here we report that a crystal engineering7 or reticular chemistry strategy that controls pore functionality and size in a series of MOMs with coordinately saturated metal centres and periodically arrayed hexafluorosilicate (SiF_6~(2-)) anions enables a 'sweet spot' of kinetics and thermodynamics that offers high volumetric uptake at low CO_2 partial pressure (less than 0.15 bar) .Most importantly, such MOMs offer an unprecedented CO_2 sorption selectivity over N_2, H_2 and CH_4, even in the presence of moisture. These MOMs are therefore relevant to CO_2 separation in the context of post-combustion (flue gas, CO_2/N_2), pre-combustion (shifted synthesis gas stream, CO_2/H_2) and natural gas upgrading (natural gas clean-up, CO_2/CH_4).
机译:目前,与分离和纯化工业产品(例如气体,精细化学品和淡水)有关的能源成本约占全球能源生产的15%,预计到2050年对此类商品的需求将增加三倍(参考资料1)。 )。开发有效的分离和纯化技术,其能源足迹要小得多,与其他气体相比,二氧化碳(CO_2)面临的挑战更大;除了参与气候变化外,CO_2还包含在天然气,沼气(由生物质产生的天然气),合成气(CO / H_2,精炼厂的主要氢气来源)和许多其他气流中。在可以利用平衡和动力学选择性的多孔晶体材料的背景下,尺寸选择性和靶向分子识别是CO_2分离和捕获的诱人特性,例如5A和13X型沸石(参考文献2)以及金属有机物材料(MOM)。在这里,我们报告了一种晶体工程7或网状化学策略,该策略可控制具有饱和金属中心和周期性排列的六氟硅酸盐(SiF_6〜(2-))阴离子的一系列MOM中的孔功能和尺寸,从而实现动力学和热力学的“最佳点”最重要的是,即使在存在水分的情况下,此类MOM仍能在N_2,H_2和CH_4上提供前所未有的CO_2吸附选择性。因此,这些MOM与后燃烧(烟道气,CO_2 / N_2),预燃烧(变换合成气流,CO_2 / H_2)和天然气提质(天然气净化,CO_2 / CH_4)。

著录项

  • 来源
    《Nature》 |2013年第7439期|80-84|共5页
  • 作者单位

    Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, USA;

    Advanced Membranes and Porous Materials Center, Division of Physical Sciences and Engineering, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;

    Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, USA;

    Advanced Membranes and Porous Materials Center, Division of Physical Sciences and Engineering, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;

    Advanced Membranes and Porous Materials Center, Division of Physical Sciences and Engineering, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;

    Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, USA;

    Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, USA;

    Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, USA;

    Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, USA;

    Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, USA;

    Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, USA,Advanced Membranes and Porous Materials Center, Division of Physical Sciences and Engineering, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;

    Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号