首页> 外文期刊>Nature >Decoding the regulatory landscape of medulloblastoma using DNA methylation sequencing
【24h】

Decoding the regulatory landscape of medulloblastoma using DNA methylation sequencing

机译:使用DNA甲基化测序分析髓母细胞瘤的调控环境

获取原文
获取原文并翻译 | 示例
       

摘要

成神经管细胞瘤是最常见的恶性儿童脑瘤。在这篇论文中,作者发表了来自人类和小鼠肿瘤的一个全面的全基因组DNA甲基化数据集以及对组蛋白修饰、RNA转录体和基因组测序所做的分析。这种综合分析揭示了甲基化组中的大量改变,可帮助识别潜在治疗干预的新目标。%Epigenetic alterations, that is, disruption of DNA methylation and chromatin architecture, are now acknowledged as a universal feature of tumorigenesis. Medulloblastoma, a clinically challenging, malignant childhood brain tumour, is no exception. Despite much progress from recent genomics studies, with recurrent changes identified in each of the four distinct tumour subgroups (WNT-pathway-activated, SHH-pathway-activated, and the less-well-characterized Group 3 and Group 4), many cases still lack an obvious genetic driver. Here we present whole-genome bisulphite-sequencing data from thirty-four human and five murine tumours plus eight human and three murine normal controls, augmented with matched whole-genome, RNA and chromatin immunoprecipitation sequencing data. This comprehensive data set allowed us to decipher several features underlying the interplay between the genome, epigenome and transcriptome, and its effects on medulloblastoma pathophysiology. Most notable were highly prevalent regions of hypomethylation correlating with increased gene expression, extending tens of kilobases downstream of transcription start sites. Focal regions of low methylation linked to transcription-factor-binding sites shed light on differential tran-scriptional networks between subgroups, whereas increased methylation due to re-normalization of repressed chromatin in DNA methylation valleys was positively correlated with gene expression. Large, partially methylated domains affecting up to one-third of the genome showed increased mutation rates and gene silencing in a subgroup-specific fashion. Epigenetic alterations also affected novel medulloblastoma candidate genes (for example, LIN28B), resulting in alternative promoter usage and/or differential messenger RNA/microRNA expression. Analysis of mouse medulloblastoma and precursor-cell methylation demonstrated a somatic origin for many alterations. Our data provide insights into the epigenetic regulation of transcription and genome organization in medulloblastoma path-ogenesis, which are probably also of importance in a wider developmental and disease context.
机译:成神经管细胞瘤是最常见的恶性儿童脑瘤。在这篇论文中,作者发表了来自人类和小鼠肿瘤的一个全面的全基因组DNA甲基化数据集以及对组蛋白修饰、RNA转录体和基因组测序所做的分析。这种综合分析揭示了甲基化组中的大量改变,可帮助识别潜在治疗干预的新目标。%Epigenetic alterations, that is, disruption of DNA methylation and chromatin architecture, are now acknowledged as a universal feature of tumorigenesis. Medulloblastoma, a clinically challenging, malignant childhood brain tumour, is no exception. Despite much progress from recent genomics studies, with recurrent changes identified in each of the four distinct tumour subgroups (WNT-pathway-activated, SHH-pathway-activated, and the less-well-characterized Group 3 and Group 4), many cases still lack an obvious genetic driver. Here we present whole-genome bisulphite-sequencing data from thirty-four human and five murine tumours plus eight human and three murine normal controls, augmented with matched whole-genome, RNA and chromatin immunoprecipitation sequencing data. This comprehensive data set allowed us to decipher several features underlying the interplay between the genome, epigenome and transcriptome, and its effects on medulloblastoma pathophysiology. Most notable were highly prevalent regions of hypomethylation correlating with increased gene expression, extending tens of kilobases downstream of transcription start sites. Focal regions of low methylation linked to transcription-factor-binding sites shed light on differential tran-scriptional networks between subgroups, whereas increased methylation due to re-normalization of repressed chromatin in DNA methylation valleys was positively correlated with gene expression. Large, partially methylated domains affecting up to one-third of the genome showed increased mutation rates and gene silencing in a subgroup-specific fashion. Epigenetic alterations also affected novel medulloblastoma candidate genes (for example, LIN28B), resulting in alternative promoter usage and/or differential messenger RNA/microRNA expression. Analysis of mouse medulloblastoma and precursor-cell methylation demonstrated a somatic origin for many alterations. Our data provide insights into the epigenetic regulation of transcription and genome organization in medulloblastoma path-ogenesis, which are probably also of importance in a wider developmental and disease context.

著录项

  • 来源
    《Nature》 |2014年第7506期|537-541A2|共6页
  • 作者单位

    Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany;

    Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany;

    Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany;

    Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany;

    Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany;

    et al;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 02:53:04

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号