首页> 外文期刊>Nature >Ribosomal oxygenases are structurally conserved from prokaryotes to humans
【24h】

Ribosomal oxygenases are structurally conserved from prokaryotes to humans

机译:核糖体氧化酶在结构上从原核生物到人类都是保守的

获取原文
获取原文并翻译 | 示例
           

摘要

2-Oxoglutarate (2OG)-dependent oxygenases have important roles in the regulation of gene expression via demethylation of N-methylated chromatin components and in the hydroxylation of transcription factors and splicing factor proteins. Recently, 2OG-dependent oxygenases that catalyse hydroxylation of transfer RNA and ribosomal proteins have been shown to be important in translation relating to cellular growth, T_H 17-cell differentiation and translational accuracy. The finding that ribosomal oxygenases (ROXs) occur in organisms ranging from prokaryotes to humans raises questions as to their structural and evolutionary relationships. In Escherichia coli, YcfD catalyses arginine hydroxylation in the ribosomal protein L16; in humans, MYC-induced nuclear antigen (MINA53; also known as MINA) and nucleolar protein 66 (NO66) catalyse histidine hydroxylation in the ribosomal proteins RPL27 A and RPL8, respectively. The functional assignments of ROXs open therapeutic possibilities via either ROX inhibition or targeting of differentially modified ribo-somes. Despite differences in the residue and protein selectivities of prokaryotic and eukaryotic ROXs, comparison of the crystal structures of E. coli YcfD and Rhodothermus marinusYcfD with those of human MINA53 and NO66 reveals highly conserved folds and novel dimerization modes defining a new structural subfamily of 2OG-dependent oxygenases. ROX structures with and without their substrates support their functional assignments as hydroxylases but not demethylases, and reveal how the subfamily has evolved to catalyse the hydroxylation of different residue side chains of ribosomal proteins. Comparison of ROX crystal structures with those of other JmjC-domain-containing hydroxylases, including the hypoxia-inducible factor asparaginyl hydroxylase FIH and histone N~ε-methyl lysine demethylases, identifies branch points in 2OG-dependent oxyge-nase evolution and distinguishes between JmjC-containing hydroxylases and demethylases catalysing modifications of translational and transcriptional machinery. The structures reveal that new protein hydroxylation activities can evolve by changing the coordination position from which the iron-bound substrate-oxidizing species reacts. This coordination flexibility has probably contributed to the evolution of the wide range of reactions catalysed by oxygenases.
机译:2-Oxoglutarate(2OG)依赖性加氧酶在通过N-甲基化染色质组分的去甲基化调节基因表达以及在转录因子和剪接因子蛋白的羟化中起重要作用。最近,已经证明催化转移RNA和核糖体蛋白羟基化的2OG依赖性加氧酶在与细胞生长,T_H 17细胞分化和翻译准确性有关的翻译中很重要。核糖体加氧酶(ROXs)存在于从原核生物到人类的生物中的发现提出了关于其结构和进化关系的疑问。在大肠杆菌中,YcfD催化核糖体蛋白L16中的精氨酸羟基化。在人类中,MYC诱导的核抗原(MINA53;也称为MINA)和核仁蛋白66(NO66)分别催化核糖体蛋白RPL27 A和RPL8中的组氨酸羟基化。 ROX的功能分配可通过ROX抑制或靶向差异修饰的核糖体来打开治疗可能性。尽管原核和真核ROX的残基和蛋白质选择性不同,但大肠杆菌YcfD和Rhodothermus marinusYcfD的晶体结构与人MINA53和NO66的晶体结构的比较显示出高度保守的折叠和新颖的二聚化模式,定义了2OG-的新结构亚家族。依赖性加氧酶。具有和不具有其底物的ROX结构支持其功能分配为羟化酶而不是脱甲基酶,并揭示了亚家族如何进化以催化核糖体蛋白不同残基侧链的羟基化。 ROX晶体结构与其他含JmjC域的羟化酶(包括缺氧诱导因子天冬酰胺基羟化酶FIH和组蛋白N〜ε-甲基赖氨酸脱甲基酶)的结构的比较,确定了2OG依赖性氧化酶进化中的分支点,并区分了JmjC含羟化酶和脱甲基酶催化翻译和转录机制的修饰。这些结构表明,通过改变铁结合的底物氧化物质起反应的配位位置,可以进化出新的蛋白质羟基化活性。这种配位灵活性可能促进了加氧酶催化的多种反应的发展。

著录项

  • 来源
    《Nature》 |2014年第7505期|422-426|共5页
  • 作者单位

    The Department of Chemistry and Oxford Centre for Integrative Systems Biology, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK;

    The Department of Chemistry and Oxford Centre for Integrative Systems Biology, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK;

    Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK;

    Structural Genomics Consortium, University of Oxford, Headington, Oxford OX3 7DQ, UK;

    The Department of Chemistry and Oxford Centre for Integrative Systems Biology, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK;

    Structural Genomics Consortium, University of Oxford, Headington, Oxford OX3 7DQ, UK;

    The Department of Chemistry and Oxford Centre for Integrative Systems Biology, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK;

    The Department of Chemistry and Oxford Centre for Integrative Systems Biology, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK;

    The Department of Chemistry and Oxford Centre for Integrative Systems Biology, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK;

    Synchrotron SOLEIL, Saint Aubin, 91192 Gif-sur-Yvette Cedex, France;

    Structural Genomics Consortium, University of Oxford, Headington, Oxford OX3 7DQ, UK;

    Structural Genomics Consortium, University of Oxford, Headington, Oxford OX3 7DQ, UK;

    Structural Genomics Consortium, University of Oxford, Headington, Oxford OX3 7DQ, UK;

    Structural Genomics Consortium, University of Oxford, Headington, Oxford OX3 7DQ, UK;

    Structural Genomics Consortium, University of Oxford, Headington, Oxford OX3 7DQ, UK;

    Structural Genomics Consortium, University of Oxford, Headington, Oxford OX3 7DQ, UK;

    Structural Genomics Consortium, University of Oxford, Headington, Oxford OX3 7DQ, UK,NIHR Oxford Biomedical Research Unit, Botnar Research Centre, Oxford OX3 7LD, UK;

    The Department of Chemistry and Oxford Centre for Integrative Systems Biology, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK;

    Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK;

    The Department of Chemistry and Oxford Centre for Integrative Systems Biology, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号