首页> 外文期刊>Nature >Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging
【24h】

Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging

机译:通过飞秒轨道成像跟踪单个分子的超快运动

获取原文
获取原文并翻译 | 示例
       

摘要

Watching a single molecule move on its intrinsic timescale has been one of the central goals of modern nanoscience, and calls for measurements that combine ultrafast temporal resolution(1-8) with atomic spatial resolution(9-30). Steady-state experiments access the requisite spatial scales, as illustrated by direct imaging of individual molecular orbitals using scanning tunnelling microscopy(9-11) or the acquisition of tip-enhanced Raman and luminescence spectra with sub-molecular resolution(26-28). But tracking the intrinsic dynamics of a single molecule directly in the time domain faces the challenge that interactions with the molecule must be confined to a femtosecond time window. For individual nanoparticles, such ultrafast temporal confinement has been demonstrated(18) by combining scanning tunnelling microscopy with so-called lightwave electronics(1-8), which uses the oscillating carrier wave of tailored light pulses to directly manipulate electronic motion on timescales faster even than a single cycle of light. Here we build on ultrafast terahertz scanning tunnelling microscopy to access a state-selective tunnelling regime, where the peak of a terahertz electric-field waveform transiently opens an otherwise forbidden tunnelling channel through a single molecular state. It thereby removes a single electron from an individual pentacene molecule's highest occupied molecular orbital within a time window shorter than one oscillation cycle of the terahertz wave. We exploit this effect to record approximately 100-femtosecond snapshot images of the orbital structure with sub-angstrom spatial resolution, and to reveal, through pump/probe measurements, coherent molecular vibrations at terahertz frequencies directly in the time domain. We anticipate that the combination of lightwave electronics(1-8) and the atomic resolution of our approach will open the door to visualizing ultrafast photochemistry and the operation of molecular electronics on the single-orbital scale.
机译:观察单个分子在其固有时间尺度上的移动一直是现代纳米科学的主要目标之一,并呼吁将超快时间分辨率(1-8)与原子空间分辨率(9-30)结合起来进行测量。稳态实验可访问必要的空间尺度,如使用扫描隧道显微镜直接对单个分子轨道成像(9-11)或获得尖端增强的拉曼光谱和具有亚分子分辨率的发光光谱(26-28)所示。但是直接在时域中追踪单个分子的内在动力学面临着一个挑战,即与该分子的相互作用必须限制在飞秒的时间窗口内。对于单个纳米粒子,通过将扫描隧道显微镜与所谓的光波电子学(1-8)结合使用,已证明了这种超快的时间限制(18),该技术使用量身定制的光脉冲的振荡载波直接在时标上更快地操纵电子运动,甚至而不是一个光周期。在这里,我们建立在超快太赫兹扫描隧道显微镜的基础上,以访问状态选择隧穿机制,其中太赫兹电场波形的峰值会通过单个分子态暂时打开否则禁止的隧穿通道。因此,它在比太赫兹波的一个振荡周期短的时间窗内,从并五苯分子的最高占据分子轨道中去除了一个电子。我们利用这种效应来记录具有亚埃空间分辨率的大约100飞秒的轨道结构快照图像,并通过泵浦/探针测量来揭示时域中太赫兹频率的相干分子振动。我们预计,将光波电子学(1-8)与我们的方法的原子分辨率相结合,将为可视化超快光化学和分子电子在单轨道规模上的运行打开一扇门。

著录项

  • 来源
    《Nature》 |2016年第7628期|263-267|共5页
  • 作者单位

    Univ Regensburg, Dept Phys, D-93040 Regensburg, Germany;

    Univ Regensburg, Dept Phys, D-93040 Regensburg, Germany;

    Univ Regensburg, Dept Phys, D-93040 Regensburg, Germany;

    Univ Regensburg, Dept Phys, D-93040 Regensburg, Germany;

    Univ Regensburg, Dept Phys, D-93040 Regensburg, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 02:52:18

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号