首页> 外文期刊>Nature >Massive radius-dependent flow slippage in carbon nanotubes
【24h】

Massive radius-dependent flow slippage in carbon nanotubes

机译:碳纳米管中大量的半径相关流动滑移

获取原文
获取原文并翻译 | 示例
       

摘要

Measurements and simulations have found that water moves through carbon nanotubes at exceptionally high rates owing to nearly frictionless interfaces(1-4). These observations have stimulated interest in nanotube-based membranes for applications including desalination, nano-filtration and energy harvesting(5-10), yet the exact mechanisms of water transport inside the nanotubes and at the water-carbon interface continue to be debated(11,12) because existing theories do not provide a satisfactory explanation for the limited number of experimental results available so far(13). This lack of experimental results arises because, even though controlled and systematic studies have explored transport through individual nanotubes(7-9,14-17), none has met the considerable technical challenge of unambiguously measuring the permeability of a single nanotube(11). Here we show that the pressure-driven flow rate through individual nanotubes can be determined with unprecedented sensitivity and without dyes from the hydrodynamics of water jets as they emerge from single nanotubes into a surrounding fluid. Our measurements reveal unexpectedly large and radius-dependent surface slippage in carbon nanotubes, and no slippage in boron nitride nanotubes that are crystallographically similar to carbon nanotubes, but electronically different. This pronounced contrast between the two systems must originate from subtle differences in the atomic-scale details of their solid-liquid interfaces, illustrating that nanofluidics is the frontier at which the continuum picture of fluid mechanics meets the atomic nature of matter.
机译:测量和模拟发现,由于几乎无摩擦的界面,水以极高的速率流经碳纳米管(1-4)。这些发现激起了人们对基于纳米管的膜在海水淡化,纳米过滤和能量收集等领域的应用的兴趣(5-10),但有关纳米管内部以及在水-碳界面的水传输的确切机理仍在争论中(11)。 ,12),因为现有的理论不能对迄今为止有限的实验结果提供令人满意的解释(13)。缺乏实验结果的原因是,尽管进行了控制和系统的研究,探索了通过单个纳米管的传输(7-9,14-17),但没有一个能满足明确测量单个纳米管的渗透性的巨大技术挑战(11)。在这里,我们表明,通过单个纳米管的压力驱动流速可以以前所未有的灵敏度来确定,并且当染料从单个纳米管出现到周围流体中时,无需使用射流的水动力染料。我们的测量揭示了碳纳米管中出乎意料的大且与半径相关的表面滑移,而氮化硼纳米管的滑移在晶体学上与碳纳米管相似,但在电子上却不同。这两个系统之间的明显对比必须源于它们的固液界面在原子尺度细节上的细微差别,这说明纳米流体是流体力学连续图满足物质原子性质的前沿。

著录项

  • 来源
    《Nature》 |2016年第7619期|210-213|共4页
  • 作者单位

    PSL Res Univ, Ecole Normale Super, Lab Phys Stat, F-75005 Paris 05, France;

    PSL Res Univ, Ecole Normale Super, Lab Phys Stat, F-75005 Paris 05, France;

    PSL Res Univ, Ecole Normale Super, Lab Phys Stat, F-75005 Paris 05, France;

    PSL Res Univ, Ecole Normale Super, Lab Phys Stat, F-75005 Paris 05, France|Brown Univ, Dept Phys, Providence, RI 02912 USA;

    PSL Res Univ, Ecole Normale Super, Lab Phys Stat, F-75005 Paris 05, France;

    PSL Res Univ, Ecole Normale Super, Lab Phys Stat, F-75005 Paris 05, France;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 02:52:18

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号