首页> 美国卫生研究院文献>other >Massive radius-dependent flow slippage in carbon nanotubes
【2h】

Massive radius-dependent flow slippage in carbon nanotubes

机译:碳纳米管中大量的半径相关流动滑移

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Simulations and measurements have established that water moves through carbon nanotubes with exceptionally high rates due to nearly frictionless interfaces–. These observations have stimulated interest in nanotube-based membranes for applications that range from desalination to nano-filtration and energy harvesting–, yet the exact water transport mechanisms inside the nanotubes and at the water-carbon interface continue to be controversially discussed, because existing theories fail to provide a satisfying explanation for the limited number of experimental results available to date. This is because even though controlled and systematic studies have explored transport through individual nanotubes,,–, none has met the considerable technical challenge of unambiguously measuring the permeability of a single nanotube. Here we show that the pressure-driven flow rate across individual nanotubes can be determined with unprecedented sensitivity and without dyes from the hydrodynamics of water jets as they emerge from single nanotubes into a surrounding fluid. Our measurements reveal unexpectedly large and radius-dependent surface slippage in carbon nanotubes (CNT), and no slippage in boron-nitride nanotubes (BNNT) that are crystallographically similar to CNTs but differ electronically. This pronounced contrast between the two systems must originate from subtle differences in atomic-scale details of their solid-liquid interfaces, strikingly illustrating that nanofluidics is the frontier where the continuum picture of fluid mechanics confronts the atomic nature of matter.
机译:模拟和测量结果表明,由于几乎无摩擦的界面,水以极高的速率流过碳纳米管。这些发现激起了人们对从脱盐到纳米过滤和能量收集的纳米管基膜应用的兴趣,但是,由于现有理论,在纳米管内部以及在水-碳界面的确切水传输机理仍在争议中。迄今为止,有限的实验结果未能提供令人满意的解释。这是因为,尽管进行了控制和系统的研究,探索了通过单个纳米管的传输,但是,没有一个能满足明确测量单个纳米管的渗透性的巨大技术挑战。在这里,我们表明,可以通过空前的灵敏度确定跨单个纳米管的压力驱动流速,并且当染料从单个纳米管涌入周围流体时,无需使用射流的水动力染料。我们的测量揭示了碳纳米管(CNT)中出乎意料的大且与半径相关的表面滑移,而在晶体学上与CNT类似但在电子方面不同的氮化硼纳米管(BNNT)中无滑移。这两个系统之间的明显对比必须源于它们的固液界面在原子尺度细节上的细微差别,这突显了纳米流体学是流体力学连续图论面对物质原子本质的前沿。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号