首页> 外文期刊>Nature >A photon-photon quantum gate based on a single atom in an optical resonator
【24h】

A photon-photon quantum gate based on a single atom in an optical resonator

机译:光谐振器中基于单个原子的光子-光子量子门

获取原文
获取原文并翻译 | 示例
       

摘要

That two photons pass each other undisturbed in free space is ideal for the faithful transmission of information, but prohibits an interaction between the photons. Such an interaction is, however, required for a plethora of applications in optical quantum information processing(1). The long-standing challenge here is to realize a deterministic photon-photon gate, that is, a mutually controlled logic operation on the quantum states of the photons. This requires an interaction so strong that each of the two photons can shift the other's phase by pi radians. For polarization qubits, this amounts to the conditional flipping of one photon's polarization to an orthogonal state. So far, only probabilistic gates(2) based on linear optics and photon detectors have been realized(3), because "no known or foreseen material has an optical nonlinearity strong enough to implement this conditional phase shift"(4). Meanwhile, tremendous progress in the development of quantum-nonlinear systems has opened up new possibilities for single-photon experiments(5). Platforms range from Rydberg blockade in atomic ensembles(6) to single-atom cavity quantum electrodynamics(7). Applications such as single-photon switches(8) and transistors(9,10), two-photon gateways(11), nondestructive photon detectors(12), photon routers(13) and nonlinear phase shifters(14-18) have been demonstrated, but none of them with the ideal information carriers: optical qubits in discriminable modes. Here we use the strong light-matter coupling provided by a single atom in a high-finesse optical resonator to realize the Duan-Kimble protocol(19) of a universal controlled phase flip (p phase shift) photon-photon quantum gate. We achieve an average gate fidelity of (76.2 +/- 3.6) per cent and specifically demonstrate the capability of conditional polarization flipping as well as entanglement generation between independent input photons. This photon-photon quantum gate is a universal quantum logic element, and therefore could perform most existing two-photon operations. The demonstrated feasibility of deterministic protocols for the optical processing of quantum information could lead to new applications in which photons are essential, especially long-distance quantum communication and scalable quantum computing.
机译:两个光子在自由空间中不受干扰地相互传递是理想的忠实信息传输,但是却阻止了光子之间的相互作用。然而,这种相互作用是光量子信息处理中大量应用所必需的(1)。这里的长期挑战是实现确定性的光子-光子门,即对光子的量子态进行相互控制的逻辑运算。这需要很强的相互作用,以至于两个光子中的每一个都可以将对方的相位偏移pi弧度。对于极化量子位,这相当于将一个光子的极化有条件地翻转到正交状态。到目前为止,仅实现了基于线性光学和光子检测器的概率门(2)(3),因为“没有已知或可预见的材料具有足以实现此条件相移的光学非线性”(4)。同时,量子非线性系统发展的巨大进步为单光子实验开辟了新的可能性(5)。平台的范围从原子团簇的Rydberg封锁(6)到单原子腔量子电动力学(7)。已经证明了诸如单光子开关(8)和晶体管(9,10),双光子网关(11),无损光子检测器(12),光子路由器(13)和非线性移相器(14-18)等应用,但没有一个具有理想的信息载体:可区分模式下的光学量子比特。在这里,我们使用高精细光学谐振器中单个原子提供的强光-质耦合来实现通用受控相移(p相移)光子-光子量子门的Duan-Kimble协议(19)。我们实现了(76.2 +/- 3.6)%的平均门保真度,并特别展示了条件偏振翻转的能力以及独立输入光子之间的纠缠生成。该光子-光子量子门是通用的量子逻辑元件,因此可以执行大多数现有的两光子操作。确定性协议用于量子信息光学处理的可行性证明可能导致光子必不可少的新应用,特别是长距离量子通信和可扩展量子计算。

著录项

  • 来源
    《Nature》 |2016年第7615期|193-196|共4页
  • 作者单位

    Max Planck Inst Quantum Opt, Hans Kopfermann Str 1, D-85748 Garching, Germany;

    Max Planck Inst Quantum Opt, Hans Kopfermann Str 1, D-85748 Garching, Germany;

    Max Planck Inst Quantum Opt, Hans Kopfermann Str 1, D-85748 Garching, Germany;

    Max Planck Inst Quantum Opt, Hans Kopfermann Str 1, D-85748 Garching, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 02:52:14

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号