首页> 外文期刊>Nature >Structural organization of the inactive X chromosome in the mouse
【24h】

Structural organization of the inactive X chromosome in the mouse

机译:小鼠非活动X染色体的结构组织

获取原文
获取原文并翻译 | 示例
       

摘要

X-chromosome inactivation (XCI) involves major reorganization of the X chromosome as it becomes silent and heterochromatic. During female mammalian development, XCI is triggered by upregulation of the non-coding Xist RNA from one of the two X chromosomes. Xist coats the chromosome in cis and induces silencing of almost all genes via its A-repeat region(1,2), although some genes (constitutive escapees) avoid silencing in most cell types, and others (facultative escapees) escape XCI only in specific contexts(3). A role for Xist in organizing the inactive X (Xi) chromosome has been proposed(4-6). Recent chromosome conformation capture approaches have revealed global loss of local structure on the Xi chromosome and formation of large mega-domains, separated by a region containing the DXZ4 macrosatellite(7-10). However, the molecular architecture of the Xi chromosome, in both the silent and expressed regions, remains unclear. Here we investigate the structure, chromatin accessibility and expression status of the mouse Xi chromosome in highly polymorphic clonal neural progenitors (NPCs) and embryonic stem cells. We demonstrate a crucial role for Xist and the DXZ4-containing boundary in shaping Xi chromosome structure using allele-specific genome-wide chromosome conformation capture (Hi-C) analysis, an assay for transposase-accessible chromatin with high throughput sequencing (ATAC-seq) and RNA sequencing. Deletion of the boundary disrupts mega-domain formation, and induction of Xist RNA initiates formation of the boundary and the loss of DNA accessibility. We also show that in NPCs, the Xi chromosome lacks active/inactive compartments and topologically associating domains (TADs), except around genes that escape XCI. Escapee gene clusters display TAD-like structures and retain DNA accessibility at promoter-proximal and CTCF-binding sites. Furthermore, altered patterns of facultative escape genes in different neural progenitor clones are associated with the presence of different TAD-like structures after XCI. These findings suggest a key role for transcription and CTCF in the formation of TADs in the context of the Xi chromosome in neural progenitors.
机译:X染色体失活(XCI)涉​​及X染色体变得无声和异色时的重大重组。在雌性哺乳动物发育过程中,XCI由两个X染色体之一的非编码Xist RNA的上调触发。 Xist将顺式染色体包被并通过其A重复区诱导几乎所有基因沉默(1,2),尽管某些基因(本构性逃逸)避免了大多数细胞类型的沉默,而另一些基因(兼性逃逸)仅在特定基因中逃避了XCI。上下文(3)。 Xist在组织非活动X(Xi)染色体中的作用已被提出(4-6)。最近的染色体构象捕获方法揭示了Xi染色体上局部结构的整体丧失和大的巨域的形成,其被包含DXZ4大卫星的区域隔开(7-10)。然而,在沉默和表达区域中,Xi染色体的分子结构仍不清楚。在这里,我们研究了小鼠Xi染色体在高度多态性克隆神经祖细胞(NPC)和胚胎干细胞中的结构,染色质可及性和表达状态。我们展示了Xist和DXZ4边界在使用等位基因特有的全基因组范围内的染色体构象捕获(Hi-C)分析塑造Xi染色体结构中的关键作用,这是一种通过高通量测序(ATAC-seq)进行转座酶可及的染色质的测定方法)和RNA测序。边界的删除破坏了巨域的形成,Xist RNA的诱导引发了边界的形成和DNA可及性的丧失。我们还显示,在NPC中,Xi染色体缺少活跃/不活跃的区室和拓扑关联域(TADs),除了绕过XCI的基因之外。 Escapee基因簇显示出TAD样结构,并在启动子近端和CTCF结合位点保留DNA可及性。此外,XCI后,不同神经祖细胞克隆中兼性逃逸基因的模式改变与不同TAD样结构的存在有关。这些发现表明在神经祖细胞中,Xi染色体的背景下转录和CTCF在TAD形成中起着关键作用。

著录项

  • 来源
    《Nature》 |2016年第7613期|575-579|共5页
  • 作者单位

    PSL Res Univ, Inst Curie, CNRS, UMR3215,INSERM,U934, 26 Rue Ulm, F-75248 Paris 05, France|Friedrich Miescher Inst Biomed Res, Maulbeerstr 66, CH-4058 Basel, Switzerland;

    Univ Massachusetts, Sch Med, Dept Biochem & Mol Pharmacol, Program Syst Biol, 368 Plantat St, Worcester, MA 01605 USA;

    Stanford Univ, Sch Med, Ctr Personal Dynam Regulomes, Stanford, CA 94305 USA|Stanford Univ, Sch Med, Program Epithelial Biol, Stanford, CA 94305 USA;

    PSL Res Univ, Inst Curie, CNRS, UMR3215,INSERM,U934, 26 Rue Ulm, F-75248 Paris 05, France;

    Univ Massachusetts, Sch Med, Dept Biochem & Mol Pharmacol, Program Syst Biol, 368 Plantat St, Worcester, MA 01605 USA;

    Stanford Univ, Sch Med, Ctr Personal Dynam Regulomes, Stanford, CA 94305 USA|Stanford Univ, Sch Med, Program Epithelial Biol, Stanford, CA 94305 USA;

    PSL Res Univ, Inst Curie, CNRS, UMR3215,INSERM,U934, 26 Rue Ulm, F-75248 Paris 05, France;

    Univ Massachusetts, Sch Med, Dept Biochem & Mol Pharmacol, Program Syst Biol, 368 Plantat St, Worcester, MA 01605 USA;

    Stanford Univ, Sch Med, Ctr Personal Dynam Regulomes, Stanford, CA 94305 USA|Stanford Univ, Sch Med, Program Epithelial Biol, Stanford, CA 94305 USA;

    PSL Res Univ, Inst Curie, CNRS, UMR3215,INSERM,U934, 26 Rue Ulm, F-75248 Paris 05, France|Coll France, 11 Pl Marcelin Berthelot, F-75005 Paris, France;

    Univ Massachusetts, Sch Med, Dept Biochem & Mol Pharmacol, Program Syst Biol, 368 Plantat St, Worcester, MA 01605 USA|Univ Massachusetts, Howard Hughes Med Inst, Sch Med, 368 Plantat St, Worcester, MA 01605 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 02:52:12

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号