首页> 外文期刊>Nature >Lunar true polar wander inferred from polar hydrogen
【24h】

Lunar true polar wander inferred from polar hydrogen

机译:从极氢推断出月球真正的极地漂移

获取原文
获取原文并翻译 | 示例
       

摘要

The earliest dynamic and thermal history of the Moon is not well understood. The hydrogen content of deposits near the lunar poles may yield insight into this history, because these deposits (which are probably composed of water ice) survive only if they remain in permanent shadow. If the orientation of the Moon has changed, then the locations of the shadowed regions will also have changed. The polar hydrogen deposits have been mapped by orbiting neutron spectrometers(1-3), and their observed spatial distribution does not match the expected distribution of water ice inferred from present-day lunar temperatures(4,5). This finding is in contrast to the distribution of volatiles observed in similar thermal environments at Mercury's poles(6). Here we show that polar hydrogen preserves evidence that the spin axis of the Moon has shifted: the hydrogen deposits are antipodal and displaced equally from each pole along opposite longitudes. From the direction and magnitude of the inferred reorientation, and from analysis of the moments of inertia of the Moon, we hypothesize that this change in the spin axis, known as true polar wander, was caused by a low-density thermal anomaly beneath the Procellarum region. Radiogenic heating within this region resulted in the bulk of lunar mare volcanism(7-11) and altered the density structure of the Moon, changing its moments of inertia. This resulted in true polar wander consistent with the observed remnant polar hydrogen. This thermal anomaly still exists and, in part, controls the current orientation of the Moon. The Procellarum region was most geologically active early in lunar history(7-9), which implies that polar wander initiated billions of years ago and that a large portion of the measured polar hydrogen is ancient, recording early delivery of water to the inner Solar System. Our hypothesis provides an explanation for the antipodal distribution of lunar polar hydrogen, and connects polar volatiles to the geologic and geophysical evolution of the Moon and the bombardment history of the early Solar System.
机译:人们对月球的最早动态和热史没有很好的了解。靠近月球两极的沉积物的氢含量可能使人对这一历史有所了解,因为这些沉积物(可能由水冰组成)只有在它们保持永久阴影的情况下才能生存。如果月亮的方向已更改,则阴影区域的位置也将更改。极地氢沉积物是通过轨道中子能谱仪绘制的(1-3),其观测到的空间分布与根据当前月球温度推断的水冰的预期分布不符(4,5)。这一发现与在水星两极在类似热环境中观察到的挥发物分布相反(6)。在这里,我们显示出极性氢保留了月球的自转轴已移动的证据:氢沉积物是对极的,并且沿相反的经度从每个极均等地位移。根据推断出的重新定向的方向和幅度以及对月球惯性矩的分析,我们假设自旋轴上的这种变化(称为真正的极地漂移)是由Procellarum下方的低密度热异常引起的。区域。该区域内的辐射致热导致大量月球火山活动(7-11),并改变了月球的密度结构,从而改变了其惯性矩。这导致与观察到的残留极性氢一致的真实极性漂移。这种热异常仍然存在,并且部分地控制着月球的当前方向。 Procellarum地区在月球历史早期是最活跃的地质活动(7-9),这意味着数十亿年前发起了极地漂移,并且测得的极地氢的很大一部分是古老的,记录了水向内部太阳系的早期输送。 。我们的假设为月球极性氢的反极分布提供了解释,并将极性挥发物与月球的地质和地球物理演化以及早期太阳系的轰炸历史联系起来。

著录项

  • 来源
    《Nature》 |2016年第7595期|480-484|共5页
  • 作者单位

    Planetary Sci Inst, Tucson, AZ 85719 USA|So Methodist Univ, Dallas, TX 75275 USA;

    Univ Alabama, Huntsville, AL 35899 USA;

    Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA;

    Tokyo Inst Technol, Earth Life Sci Inst, Meguro Ku, Tokyo 1528551, Japan;

    Univ Calif Los Angeles, Los Angeles, CA 90095 USA;

    Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA;

    Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD 20723 USA;

    Columbia Univ, New York, NY 10027 USA;

    CALTECH, Pasadena, CA 91125 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 02:52:06

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号