首页> 外文期刊>Nature >Non-destructive state detection for quantum logic spectroscopy of molecular ions
【24h】

Non-destructive state detection for quantum logic spectroscopy of molecular ions

机译:分子离子量子逻辑光谱的无损状态检测

获取原文
获取原文并翻译 | 示例
       

摘要

Precision laser spectroscopy(1) of cold and trapped molecular ions is a powerful tool in fundamental physics-used, for example, in determining fundamental constants(2), testing for their possible variation in the laboratory(3,4), and searching for a possible electric dipole moment of the electron(5). However, the absence of cycling transitions in molecules poses a challenge for direct laser cooling of the ions(6), and for controlling(7-11) and detecting their quantum states. Previously used state-detection techniques based on photodissociation(12) or chemical reactions(13) are destructive and therefore inefficient, restricting the achievable resolution in laser spectroscopy. Here, we experimentally demonstrate non-destructive detection of the quantum state of a single trapped molecular ion through its strong Coulomb coupling to a well controlled, co-trapped atomic ion. An algorithm based on a state-dependent optical dipole force(14) changes the internal state of the atom according to the internal state of the molecule. We show that individual quantum states in the molecular ion can be distinguished by the strength of their coupling to the optical dipole force. We also observe quantum jumps (induced by black-body radiation) between rotational states of a single molecular ion. Using the detuning dependence of the state-detection signal, we implement a variant of quantum logic spectroscopy(15,16) of a molecular resonance. Our state-detection technique is relevant to a wide range of molecular ions, and could be applied to state-controlled quantum chemistry(17) and to spectroscopic investigations of molecules that serve as probes for interstellar clouds(18,19).
机译:冷和捕获的分子离子的精密激光光谱法(1)是基础物理学中的强大工具,例如,用于确定基本常数(2),在实验室中测试其可能的变化(3,4)并寻找电子的可能电偶极矩(5)。然而,分子中不存在循环跃迁对直接激光冷却离子(6),控制离子(7-11)和检测其量子态提出了挑战。以前使用的基于光解离(12)或化学反应(13)的状态检测技术具有破坏性,因此效率低下,从而限制了激光光谱仪可实现的分辨率。在这里,我们通过实验证明了单个捕获的分子离子通过其强大的库仑耦合与受控良好的共捕获的原子离子的无损检测。一种基于状态的光学偶极力(14)的算法会根据分子的内部状态改变原子的内部状态。我们表明,分子离子中的单个量子态可以通过其与光学偶极力的耦合强度来区分。我们还观察到单个分子离子的旋转状态之间的量子跃迁(由黑体辐射引起)。利用状态检测信号的失谐依赖性,我们实现了分子共振的量子逻辑光谱学(15,16)的变体。我们的状态检测技术与广泛的分子离子相关,可以应用于状态控制的量子化学(17)和光谱学研究用作星际云探针的分子(18,19)。

著录项

  • 来源
    《Nature》 |2016年第7591期|457-460|共4页
  • 作者单位

    Phys Tech Bundesanstalt, D-38116 Braunschweig, Germany;

    Phys Tech Bundesanstalt, D-38116 Braunschweig, Germany|Natl Inst Stand & Technol, 325 Broadway, Boulder, CO 80305 USA;

    Phys Tech Bundesanstalt, D-38116 Braunschweig, Germany;

    Phys Tech Bundesanstalt, D-38116 Braunschweig, Germany;

    Phys Tech Bundesanstalt, D-38116 Braunschweig, Germany;

    Phys Tech Bundesanstalt, D-38116 Braunschweig, Germany|Leibniz Univ Hannover, Inst Quantenopt, D-30167 Hannover, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 02:52:04

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号