首页> 外文期刊>Nature >Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets
【24h】

Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets

机译:适用于小分子和量子磁体的硬件有效的变分量子本征求解器

获取原文
获取原文并翻译 | 示例
       

摘要

Quantum computers can be used to address electronic-structure problems and problems in materials science and condensed matter physics that can be formulated as interacting fermionic problems, problems which stretch the limits of existing high-performance computers(1). Finding exact solutions to such problems numerically has a computational cost that scales exponentially with the size of the system, and Monte Carlo methods are unsuitable owing to the fermionic sign problem. These limitations of classical computational methods have made solving even few-atom electronic-structure problems interesting for implementation using medium-sized quantum computers. Yet experimental implementations have so far been restricted to molecules involving only hydrogen and helium(2-8). Here we demonstrate the experimental optimization of Hamiltonian problems with up to six qubits and more than one hundred Pauli terms, determining the ground-state energy for molecules of increasing size, up to BeH2. We achieve this result by using a variational quantum eigenvalue solver (eigensolver) with efficiently prepared trial states that are tailored specifically to the interactions that are available in our quantum processor, combined with a compact encoding of fermionic Hamiltonians(9) and a robust stochastic optimization routine(10). We demonstrate the flexibility of our approach by applying it to a problem of quantum magnetism, an antiferromagnetic Heisenberg model in an external magnetic field. In all cases, we find agreement between our experiments and numerical simulations using a model of the device with noise. Our results help to elucidate the requirements for scaling the method to larger systems and for bridging the gap between key problems in high-performance computing and their implementation on quantum hardware.
机译:量子计算机可用于解决电子结构问题以及材料科学和凝聚态物理中的问题,这些问题可被表述为相互作用的铁离子问题,这些问题扩展了现有高性能计算机的局限性(1)。在数值上找到此类问题的精确解决方案具有计算成本,该计算成本与系统的大小成指数比例,并且由于费米离子符号问题,蒙特卡洛方法不合适。经典计算方法的这些局限性使得解决使用中型量子计算机实现的甚至很少几个原子的电子结构问题也变得十分有趣。到目前为止,实验方法仅限于仅涉及氢和氦的分子(2-8)。在这里,我们演示了多达六个量子位和一百个保利项的哈密顿问题的实验优化,确定了分子大小不断增加的分子直至BeH2的基态能量。我们通过使用具有有效准备的试验状态的变分量子特征值求解器(eigensolver)来实现此结果,该试验状态专门针对我们的量子处理器中可用的相互作用量身定制,并结合了费米性哈密顿量(9)的紧凑编码和可靠的随机优化常规(10)。通过将其应用于量子磁场问题(外部磁场中的反铁磁Heisenberg模型),我们证明了我们方法的灵活性。在所有情况下,我们都使用带有噪声的设备模型在实验和数值模拟之间找到了一致。我们的结果有助于阐明将方法扩展到更大的系统以及缩小高性能计算中的关键问题与其在量子硬件上的实现之间的差距的要求。

著录项

  • 来源
    《Nature》 |2017年第7671期|242-246|共5页
  • 作者单位

    IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA;

    IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA;

    IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA;

    IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA;

    IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA;

    IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA;

    IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 02:51:53

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号