...
首页> 外文期刊>Nature >Chaotic dynamics in nanoscale NbO2 Mott memristors for analogue computing
【24h】

Chaotic dynamics in nanoscale NbO2 Mott memristors for analogue computing

机译:纳米级NbO2 Mott忆阻器用于模拟计算的混沌动力学

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

At present, machine learning systems use simplified neuron models that lack the rich nonlinear phenomena observed in biological systems, which display spatio-temporal cooperative dynamics. There is evidence that neurons operate in a regime called the edge of chaos(1) that may be central to complexity, learning efficiency, adaptability and analogue (non-Boolean) computation in brains(2-7). Neural networks have exhibited enhanced computational complexity when operated at the edge of chaos(2), and networks of chaotic elements have been proposed for solving combinatorial or global optimization problems(8). Thus, a source of controllable chaotic behaviour that can be incorporated into a neural-inspired circuit may be an essential component of future computational systems. Such chaotic elements have been simulated using elaborate transistor circuits that simulate known equations of chaos(9-12), but an experimental realization of chaotic dynamics from a single scalable electronic device has been lacking(5,6,13). Here we describe niobium dioxide (NbO2) Mott memristors each less than 100 nanometres across that exhibit both a nonlinear-transport-driven current-controlled negative differential resistance and a Mott-transition-driven temperature-controlled negative differential resistance. Mott materials have a temperature-dependent metal-insulator transition that acts as an electronic switch, which introduces a history-dependent resistance into the device. We incorporate these memristors into a relaxation oscillator(14) and observe a tunable range of periodic and chaotic self-oscillations(15). We show that the nonlinear current transport coupled with thermal fluctuations at the nanoscale generates chaotic oscillations. Such memristors could be useful in certain types of neural-inspired computation by introducing a pseudo-random signal that prevents global synchronization and could also assist in finding a global minimum during a constrained search. We specifically demonstrate that incorporating such memristors into the hardware of a Hopfield computing network can greatly improve the efficiency and accuracy of converging to a solution for computationally difficult problems.
机译:当前,机器学习系统使用简化的神经元模型,该模型缺少在生物系统中观察到的丰富的非线性现象,这些现象表现出时空协作动态。有证据表明,神经元在一种称为混沌边缘的机制中运作(1),这可能是大脑复杂性,学习效率,适应性和模拟(非布尔)计算的核心(2-7)。神经网络在混沌边缘运行时表现出更高的计算复杂度(2),并且提出了混沌元素网络来解决组合或全局优化问题(8)。因此,可以合并到神经启发电路中的可控混沌行为的来源可能是未来计算系统的重要组成部分。已经使用复杂的晶体管电路模拟了这样的混沌元件,这些晶体管电路模拟了已知的混沌方程(9-12),但是缺乏从单个可缩放电子设备实现混沌动力学的实验实现(5,6,13)。在这里,我们描述了跨过小于100纳米的二氧化铌(NbO2)Mott忆阻器,它既具有非线性传输驱动的电流控制的负微分电阻,又具有Mott过渡驱动的温度控制的负微分电阻。莫特材料具有与温度有关的金属-绝缘体过渡层,该过渡层充当电子开关,从而将依赖于历史的电阻引入器件中。我们将这些忆阻器整合到张弛振荡器中(14)并观察到周期性和混沌自振荡的可调范围(15)。我们表明,非线性电流传输与纳米尺度上的热波动耦合会产生混沌振荡。通过引入伪随机信号可以防止此类记忆忆阻器在某些类型的神经启发计算中使用,该伪随机信号可以防止全局同步,并且还可以在受约束的搜索过程中帮助找到全局最小值。我们具体证明了将此类忆阻器整合到Hopfield计算网络的硬件中可以极大地提高收敛到计算难题的解决方案的效率和准确性。

著录项

  • 来源
    《Nature》 |2017年第7667期|318-321|共4页
  • 作者单位

    Hewlett Packard Labs, 1501 Page Mill Rd, Palo Alto, CA 94304 USA;

    Hewlett Packard Labs, 1501 Page Mill Rd, Palo Alto, CA 94304 USA;

    Hewlett Packard Labs, 1501 Page Mill Rd, Palo Alto, CA 94304 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号