首页> 外文期刊>Nature >Spin-orbit-coupled fermions in an optical lattice clock
【24h】

Spin-orbit-coupled fermions in an optical lattice clock

机译:光学晶格时钟中的自旋耦合费米子

获取原文
获取原文并翻译 | 示例
       

摘要

Engineered spin-orbit coupling (SOC) in cold-atom systems can enable the study of new synthetic materials and complex condensed matter phenomena1-8. However, spontaneous emission in alkali-atom spin-orbit-coupled systems is hindered by heating, limiting the observation of many-body effects(1,2,5) and motivating research into potential alternatives(9-11). Here we demonstrate that spin-orbit-coupled fermions can be engineered to occur naturally in a one-dimensional optical lattice clock(12). In contrast to previous SOC experiments(1-11), here the SOC is both generated and probed using a direct ultra-narrow optical clock transition between two electronic orbital states in Sr-87 atoms. We use clock spectroscopy to prepare lattice band populations, internal electronic states and quasi-momenta, and to produce spin-orbit-coupled dynamics. The exceptionally long lifetime of the excited clock state (160 seconds) eliminates decoherence and atom loss from spontaneous emission at all relevant experimental timescales, allowing subsequent momentum-and spin-resolved in situ probing of the SOC band structure and eigenstates. We use these capabilities to study Bloch oscillations, spin-momentum locking and Van Hove singularities in the transition density of states. Our results lay the groundwork for using fermionic optical lattice clocks to probe new phases of matter.
机译:冷原子系统中的工程自旋轨道耦合(SOC)可以研究新的合成材料和复杂的凝聚态现象1-8。然而,加热阻碍了碱原子自旋轨道耦合系统的自发发射,限制了对多体效应的观察(1,2,5),并推动了对潜在替代物的研究(9-11)。在这里我们证明了自旋轨道耦合费米子可以被设计成在一维光学晶格时钟中自然发生(12)。与先前的SOC实验(1-11)相比,这里SOC是使用Sr-87原子中两个电子轨道状态之间的直接超窄光学时钟跃迁生成和探测的。我们使用时钟光谱学来准备晶格能带,内部电子态和准动量,并产生自旋轨道耦合动力学。激发时钟状态的超长寿命(160秒)消除了在所有相关实验时标下自发发射的退相干和原子损失,从而可以随后对SOC带结构和本征态进行动量和自旋分辨原位探测。我们使用这些功能来研究状态转换密度中的Bloch振荡,自旋动量锁定和Van Hove奇异性。我们的研究结果为使用铁离子光学晶格钟探测物质的新相奠定了基础。

著录项

  • 来源
    《Nature》 |2017年第7639期|66-70|共5页
  • 作者单位

    Univ Colorado, NIST, JILA, Boulder, CO 80309 USA|Univ Colorado, Dept Phys, Boulder, CO 80309 USA;

    Univ Colorado, NIST, JILA, Boulder, CO 80309 USA|Univ Colorado, Dept Phys, Boulder, CO 80309 USA;

    Univ Colorado, NIST, JILA, Boulder, CO 80309 USA|Univ Colorado, Dept Phys, Boulder, CO 80309 USA;

    Univ Colorado, NIST, JILA, Boulder, CO 80309 USA|Univ Colorado, Dept Phys, Boulder, CO 80309 USA|Johns Hopkins Appl Phys Lab, Laurel, MD 20723 USA;

    Univ Colorado, NIST, JILA, Boulder, CO 80309 USA|Univ Colorado, Dept Phys, Boulder, CO 80309 USA;

    Univ Colorado, NIST, JILA, Boulder, CO 80309 USA|Univ Colorado, Dept Phys, Boulder, CO 80309 USA;

    Univ Colorado, NIST, JILA, Boulder, CO 80309 USA|Univ Colorado, Dept Phys, Boulder, CO 80309 USA|Peking Univ, Sch Phys, Int Ctr Quantum Mat, Beijing 100871, Peoples R China;

    Univ Colorado, NIST, JILA, Boulder, CO 80309 USA|Univ Colorado, Dept Phys, Boulder, CO 80309 USA;

    Univ Colorado, NIST, JILA, Boulder, CO 80309 USA|Univ Colorado, Dept Phys, Boulder, CO 80309 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 02:51:42

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号