首页> 外文期刊>Nature >Synthetic three-dimensional atomic structures assembled atom by atom
【24h】

Synthetic three-dimensional atomic structures assembled atom by atom

机译:合成的三维原子结构逐个原子组装

获取原文
获取原文并翻译 | 示例
       

摘要

A great challenge in current quantum science and technology research is to realize artificial systems of a large number of individually controlled quantum bits for applications in quantum computing and quantum simulation. Many experimental platforms are being explored, including solid-state systems, such as superconducting circuits(1) or quantum dots(2), and atomic, molecular and optical systems, such as photons, trapped ions or neutral atoms(3-7). The latter offer inherently identical qubits that are well decoupled from the environment and could provide synthetic structures scalable to hundreds of qubits or more(8). Quantum-gas microscopes(9) allow the realization of two-dimensional regular lattices of hundreds of atoms, and large, fully loaded arrays of about 50 microtraps (or 'optical tweezers') with individual control are already available in one(10) and two(11) dimensions. Ultimately, however, accessing the third dimension while keeping single-atom control will be required, both for scaling to large numbers and for extending the range of models amenable to quantum simulation. Here we report the assembly of defect-free, arbitrarily shaped three-dimensional arrays, containing up to 72 single atoms. We use holographic methods and fast, programmable moving tweezers to arrange-atom by atom and plane by plane-initially disordered arrays into target structures of almost any geometry. These results present the prospect of quantum simulation with tens of qubits arbitrarily arranged in space and show that realizing systems of hundreds of individually controlled qubits is within reach using current technology.
机译:当前的量子科学和技术研究中的一个巨大挑战是实现具有大量独立控制的量子位的人工系统,以用于量子计算和量子模拟。正在探索许多实验平台,包括固态系统,例如超导电路(1)或量子点(2),以及原子,分子和光学系统,例如光子,捕获的离子或中性原子(3-7)。后者提供了与环境完全解耦的内在相同的量子位,并且可以提供可扩展到数百个量子位或更多的合成结构(8)。量子气体显微镜(9)可以实现数百个原子的二维规则晶格,并且在一个单独的控件中已经可以使用约50个带有单独控制的微陷阱(或``光学镊子'')的大型,满载阵列,并且(10)和两(11)维。但是,最终将需要在保持单原子控制的同时访问三维空间,以进行大规模缩放并扩展适用于量子模拟的模型范围。在这里,我们报告了无缺陷,任意形状的三维阵列的组装,该阵列包含多达72个单原子。我们使用全息方法和快速,可编程的移动镊子,将原子按原子排列,平面按平面初始无序排列成几乎任何几何形状的目标结构。这些结果提供了在空间中任意排列数十个量子位的量子模拟的前景,并表明使用当前技术可以实现数百个独立控制的量子位的系统。

著录项

  • 来源
    《Nature》 |2018年第7721期|79-82|共4页
  • 作者单位

    Univ Paris Saclay, CNRS, Lab Charles Fabry, Inst Opt,Grad Sch, Palaiseau, France;

    Univ Paris Saclay, CNRS, Lab Charles Fabry, Inst Opt,Grad Sch, Palaiseau, France;

    Univ Paris Saclay, CNRS, Lab Charles Fabry, Inst Opt,Grad Sch, Palaiseau, France;

    Univ Paris Saclay, CNRS, Lab Charles Fabry, Inst Opt,Grad Sch, Palaiseau, France;

    Univ Paris Saclay, CNRS, Lab Charles Fabry, Inst Opt,Grad Sch, Palaiseau, France;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 02:51:34

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号