首页> 外文期刊>Nature >Whole-organism clone tracing using single-cell sequencing
【24h】

Whole-organism clone tracing using single-cell sequencing

机译:使用单细胞测序进行全生物克隆追踪

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Embryonic development is a crucial period in the life of a multicellular organism, during which limited sets of embryonic progenitors produce all cells in the adult body. Determining which fate these progenitors acquire in adult tissues requires the simultaneous measurement of clonal history and cell identity at single-cell resolution, which has been a major challenge. Clonal history has traditionally been investigated by microscopically tracking cells during development(1,2), monitoring the heritable expression of genetically encoded fluorescent proteins(3) and, more recently, using next-generation sequencing technologies that exploit somatic mutations(4), microsatellite instability(5), transposon tagging(6), viral barcoding(7), CRISPR-Cas(9) genome editing(8-13) and Cre-loxP recombination(14). Single-cell transcriptomics(15) provides a powerful platform for unbiased cell-type classification. Here we present ScarTrace, a single-cell sequencing strategy that enables the simultaneous quantification of clonal history and cell type for thousands of cells obtained from different organs of the adult zebrafish. Using ScarTrace, we show that a small set of multipotent embryonic progenitors generate all haematopoietic cells in the kidney marrow, and that many progenitors produce specific cell types in the eyes and brain. In addition, we study when embryonic progenitors commit to the left or right eye. ScarTrace reveals that epidermal and mesenchymal cells in the caudal fin arise from the same progenitors, and that osteoblast-restricted precursors can produce mesenchymal cells during regeneration. Furthermore, we identify resident immune cells in the fin with a distinct clonal origin from other blood cell types. We envision that similar approaches will have major applications in other experimental systems, in which the matching of embryonic clonal origin to adult cell type will ultimately allow reconstruction of how the adult body is built from a single cell.
机译:胚胎发育是多细胞生物生命中的关键时期,在此期间,有限的胚胎祖细胞集会在成体中产生所有细胞。要确定这些祖细胞在成人组织中获得哪种命运,就需要在单细胞分辨率下同时测量克隆病史和细胞身份,这是一个重大挑战。传统上已经通过显微镜观察发育过程中的细胞(1,2),监测遗传编码的荧光蛋白的遗传表达(3)以及最近使用了利用体细胞突变的下一代测序技术(4),微卫星技术来研究克隆历史。不稳定性(5),转座子标记(6),病毒条形码(7),CRISPR-Cas(9)基因组编辑(8-13)和Cre-loxP重组(14)。单细胞转录组学(15)为无偏见的细胞类型分类提供了一个强大的平台。在这里,我们介绍了ScarTrace,这是一种单细胞测序策略,可同时量化成年斑马鱼不同器官获得的成千上万个细胞的克隆历史和细胞类型。使用ScarTrace,我们显示了少数多能胚胎祖细胞在肾中生成所有造血细胞,并且许多祖细胞在眼睛和大脑中产生特定的细胞类型。另外,我们研究胚胎祖细胞何时定居于左眼或右眼。 ScarTrace揭示了尾鳍中的表皮和间充质细胞来自相同的祖细胞,成骨细胞受限的前体可在再生过程中产生间充质细胞。此外,我们确定了鳍中的驻留免疫细胞具有与其他血细胞类型不同的克隆起源。我们设想类似的方法将在其他实验系统中具有重要的应用,在该系统中,将胚胎克隆起源与成年细胞类型进行匹配将最终允许重建单个细胞如何构建成年人体。

著录项

  • 来源
    《Nature》 |2018年第7699期|108-112|共5页
  • 作者单位

    Royal Netherlands Acad Arts & Sci, Hubrecht Inst KNAW, Oncode Inst, NL-3584 CT Utrecht, Netherlands;

    Royal Netherlands Acad Arts & Sci, Hubrecht Inst KNAW, Oncode Inst, NL-3584 CT Utrecht, Netherlands;

    Royal Netherlands Acad Arts & Sci, Hubrecht Inst KNAW, Oncode Inst, NL-3584 CT Utrecht, Netherlands;

    Royal Netherlands Acad Arts & Sci, Hubrecht Inst KNAW, Oncode Inst, NL-3584 CT Utrecht, Netherlands;

    Royal Netherlands Acad Arts & Sci, Hubrecht Inst KNAW, Oncode Inst, NL-3584 CT Utrecht, Netherlands;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号