首页> 外文期刊>Nature >A programmable two-qubit quantum processor in silicon
【24h】

A programmable two-qubit quantum processor in silicon

机译:硅中的可编程两量子位量子处理器

获取原文
获取原文并翻译 | 示例
       

摘要

Now that it is possible to achieve measurement and control fidelities for individual quantum bits (qubits) above the threshold for fault tolerance, attention is moving towards the difficult task of scaling up the number of physical qubits to the large numbers that are needed for fault-tolerant quantum computing(1,2). In this context, quantum-dot-based spin qubits could have substantial advantages over other types of qubit owing to their potential for all-electrical operation and ability to be integrated at high density onto an industrial platform(3-5). Initialization, readout and single-and two-qubit gates have been demonstrated in various quantum-dot-based qubit representations(6-9). However, as seen with small-scale demonstrations of quantum computers using other types of qubit(10-13), combining these elements leads to challenges related to qubit crosstalk, state leakage, calibration and control hardware. Here we overcome these challenges by using carefully designed control techniques to demonstrate a programmable two-qubit quantum processor in a silicon device that can perform the Deutsch-Josza algorithm and the Grover search algorithm-canonical examples of quantum algorithms that outperform their classical analogues. We characterize the entanglement in our processor by using quantum-state tomography of Bell states, measuring state fidelities of 85-89 per cent and concurrences of 73-82 per cent. These results pave the way for larger-scale quantum computers that use spins confined to quantum dots.
机译:既然现在可以实现高于容错阈值的单个量子位(qubit)的测量和控制保真度,那么注意力就转移到了将物理qubit的数量扩大到故障所需的大量数量这一艰巨的任务上。容许量子计算(1,2)。在这种情况下,基于量子点的自旋量子比特由于具有全电操作的潜力以及能够以高密度集成到工业平台上的能力,因此具有比其他类型量子比特更大的优势(3-5)。在各种基于量子点的量子比特表示中已经证明了初始化,读出以及单量子比特和二量子比特门(6-9)。但是,从使用其他类型的量子位(10-13)的量子计算机的小型演示中可以看出,将这些元素组合在一起会带来与量子位串扰,状态泄漏,校准和控制硬件有关的挑战。在这里,我们通过使用精心设计的控制技术来克服这些挑战,以演示硅器件中的可编程两量子位量子处理器,该处理器可以执行Deutsch-Josza算法和Grover搜索算法,其性能优于经典算法。我们使用贝尔状态的量子状态层析成像技术来表征处理器中的纠缠,测量状态保真度为85-89%,并发度为73-82%。这些结果为使用受限于量子点的自旋的大规模量子计算机铺平了道路。

著录项

  • 来源
    《Nature》 |2018年第7698期|633-637|共5页
  • 作者单位

    Delft Univ Technol, QuTech & Kavli Inst Nanosci, NL-2600 GA Delft, Netherlands;

    Delft Univ Technol, QuTech & Kavli Inst Nanosci, NL-2600 GA Delft, Netherlands;

    Delft Univ Technol, QuTech & Kavli Inst Nanosci, NL-2600 GA Delft, Netherlands;

    Univ Wisconsin, Madison, WI 53706 USA;

    Delft Univ Technol, QuTech & Kavli Inst Nanosci, NL-2600 GA Delft, Netherlands;

    Delft Univ Technol, QuTech & Kavli Inst Nanosci, NL-2600 GA Delft, Netherlands;

    Univ Wisconsin, Madison, WI 53706 USA;

    Univ Wisconsin, Madison, WI 53706 USA;

    Univ Wisconsin, Madison, WI 53706 USA;

    Univ Wisconsin, Madison, WI 53706 USA;

    Univ Wisconsin, Madison, WI 53706 USA;

    Delft Univ Technol, QuTech & Kavli Inst Nanosci, NL-2600 GA Delft, Netherlands;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 02:51:27

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号