首页> 外文期刊>Nature >Isotopic evolution of the protoplanetary disk and the building blocks of Earth and the Moon
【24h】

Isotopic evolution of the protoplanetary disk and the building blocks of Earth and the Moon

机译:原行星盘的同位素演化以及地球和月球的构造块

获取原文
获取原文并翻译 | 示例
       

摘要

Nucleosynthetic isotope variability among Solar System objects is often used to probe the genetic relationship between meteorite groups and the rocky planets (Mercury, Venus, Earth and Mars), which, in turn, may provide insights into the building blocks of the Earth-Moon system(1-5). Using this approach, it has been inferred that no primitive meteorite matches the terrestrial composition and the protoplanetary disk material from which Earth and the Moon accreted is therefore largely unconstrained. This conclusion, however, is based on the assumption that the observed nucleosynthetic variability of inner-Solar-System objects predominantly reflects spatial heterogeneity. Here we use the isotopic composition of the refractory element calcium to show that the nucleosynthetic variability in the inner Solar System primarily reflects a rapid change in the mass-independent calcium isotope composition of protoplanetary disk solids associated with early mass accretion to the proto-Sun. We measure the mass-independent Ca-48/Ca-44 ratios of samples originating from the parent bodies of ureilite and angrite meteorites, as well as from Vesta, Mars and Earth, and find that they are positively correlated with the masses of their parent asteroids and planets, which are a proxy of their accretion timescales. This correlation implies a secular evolution of the bulk calcium isotope composition of the protoplanetary disk in the terrestrial planet-forming region. Individual chondrules from ordinary chondrites formed within one million years of the collapse of the proto-Sun reveal the full range of inner-Solar-System mass independent Ca-48/Ca-44 ratios, indicating a rapid change in the composition of the material of the protoplanetary disk. We infer that this secular evolution reflects admixing of pristine outer-Solar System material into the thermally processed inner protoplanetary disk associated with the accretion of mass to the proto-Sun. The identical calcium isotope composition of Earth and the Moon reported here is a prediction of our model if the Moon-forming impact involved protoplanets or precursors that completed their accretion near the end of the protoplanetary disk's lifetime.
机译:太阳系物体之间的核合成同位素变异性通常用于探测陨石群与岩石行星(水星,金星,地球和火星)之间的遗传关系,从而可以提供对月球系统构成要素的见解。 (1-5)。使用这种方法,可以推断出没有原始的陨石与地球成分相匹配,因此从地球上和月球上增生的原行星盘材料基本上不受限制。但是,该结论基于以下假设:观测到的内部太阳系物体的核合成变异主要反映了空间异质性。在这里,我们使用难熔元素钙的同位素组成来表明内部太阳系中的核合成变异主要反映了原行星盘固体与质量无关的钙同位素组成的快速变化,与原太阳的早期质量增加相关。我们测量了源自尿素石和陨石母体以及维斯塔,火星和地球母体的样品的质量独立的Ca-48 / Ca-44比值,发现它们与母体质量呈正相关小行星和行星,它们是它们积聚时间表的代表。这种相关性意味着地球行星形成区原行星盘的钙钙同位素组成的长期演化。在原始太阳崩溃后的一百万年内,由普通球粒形成的各个球粒,揭示了整个太阳系内部质量独立的Ca-48 / Ca-44比率,表明该物质的成分迅速变化。原行星盘。我们推断,这种长期演化反映了原始原始太阳系外物质混合到热处理后的内部原行星盘中,与原始太阳的质量增加有关。此处报道的地球和月球钙同位素组成相同,是对我们模型的预测,如果形成月球的撞击涉及原行星或在原行星盘寿命即将结束时完成增生的前体。

著录项

  • 来源
    《Nature》 |2018年第7697期|507-510|共4页
  • 作者单位

    Univ Copenhagen, Ctr Star & Planet Format, Oster Voldgade 5-7, DK-1350 Copenhagen, Denmark;

    Univ Copenhagen, Ctr Star & Planet Format, Oster Voldgade 5-7, DK-1350 Copenhagen, Denmark;

    Leibniz Inst Evolut & Biodiversitatsforsch, Museum Nat Kunde, D-10115 Berlin, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 02:51:30

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号