...
首页> 外文期刊>Nature Materials >Structural origin of enhanced slow dynamics near a wall in glass-forming systems
【24h】

Structural origin of enhanced slow dynamics near a wall in glass-forming systems

机译:玻璃成型系统中靠近壁的缓慢动力学增强的结构起源

获取原文
获取原文并翻译 | 示例
           

摘要

Spatial confinement is known to induce a drastic change in the viscosity, relaxation times, and flow profile of liquids near the glass (or jamming) transition point. The essential underlying question is how a wall affects the dynamics of densely packed systems. Here we study this fundamental problem, using experiments on a driven granular hard-sphere liquid and numerical simulations of polydisperse and bidisperse colloidal liquids. The nearly hard-core nature of the particle-wall interaction provides an ideal opportunity to study purely geometrical confinement effects. We reveal that the slower dynamics near a wall is induced by wall-induced enhancement of 'glassy structural order', which is a manifestation of strong interparticle correlations. By generalizing the structure-dynamics relation for bulk systems, we find a quantitative relation between the structural relaxation time at a certain distance from a wall and the correlation length of glassy structural order there. Our finding suggests that glassy structural ordering may be the origin of the slow glassy dynamics of a supercooled liquid. We expect that when a densely packed system (even a crowd of people) is confined by a rigid wall, the local mobility near the wall becomes significantly lower than that near the centre. Our intuition tells us that motion towards the wall may be severely suppressed. However, the very origin of this phenomenon is not understood very clearly. This problem has been a long-standing subject of research, and is now attracting renewed interest because of its relevance to nanomaterials synthesis~1, nanotribology~2, micro- and nanofluidics~(3,4), and thin-film technology. An important example is a dense liquid (for example, a supercooled liquid) confined to nanoscale dimensions~(5,6). Recent fabrication techniques of thin films and nanoporous materials have enabled detailed experimental investigations of this problem and revealed a shift in the glasstransition temperature T_g for various liquids~(7-11).
机译:众所周知,空间限制会引起粘度,弛豫时间和接近玻璃化(或堵塞)转变点的液体流动特性的急剧变化。根本的根本问题是墙如何影响密集包装系统的动力学。在这里,我们使用驱动的颗粒硬球液体的实验以及多分散和双分散胶体液体的数值模拟来研究这个基本问题。粒子-壁相互作用的近乎核心的性质为研究纯几何约束效应提供了理想的机会。我们揭示了壁附近较慢的动力学是由壁诱导的“玻璃结构顺序”的增强引起的,这是强烈的粒子间相关性的体现。通过概括大体积系统的结构动力学关系,我们发现在距墙一定距离处的结构弛豫时间与该处玻璃状结构顺序的相关长度之间的定量关系。我们的发现表明,玻璃状结构的排序可能是过冷液体缓慢玻璃状动力学的起源。我们期望,当密集的系统(甚至人群)被刚性墙限制时,墙附近的局部移动性将显着低于中心附近。我们的直觉告诉我们,可能会严重抑制朝向墙壁的运动。但是,这种现象的根源还不清楚。这个问题一直是研究的长期课题,由于它与纳米材料合成〜1,纳米摩擦学〜2,微流体和纳米流体〜(3,4)以及薄膜技术的相关性,现在引起了新的兴趣。一个重要的例子是稠密的液体(例如,过冷的液体),其被限制在纳米级尺寸〜(5,6)。薄膜和纳米多孔材料的最新制造技术已经可以对该问题进行详细的实验研究,并揭示了各种液体的玻璃化转变温度T_g〜(7-11)。

著录项

  • 来源
    《Nature Materials》 |2011年第7期|p.512-520|共9页
  • 作者单位

    Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan;

    Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan;

    Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号