首页> 外文期刊>Nature Materials >In situ micropillar compression reveals superior strength and ductility but an absence of damage in lamellar bone
【24h】

In situ micropillar compression reveals superior strength and ductility but an absence of damage in lamellar bone

机译:原位微柱压缩显示出卓越的强度和延展性,但在层状骨中无损伤

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Ageing societies suffer from an increasing incidence of bone fractures. Bone strength depends on the amount of mineral measured by clinical densitometry, but also on the micromechanical properties of the hierarchical organization of bone. Here, we investigate the mechanical response under monotonic and cyclic compression of both single osteonal lamellae and macroscopic samples containing numerous osteons. Micropillar compression tests in a scanning electron microscope, microindentation and macroscopic compression tests were performed on dry ovine bone to identify the elastic modulus, yield stress, plastic deformation, damage accumulation and failure mechanisms. We found that isolated lamellae exhibit a plastic behaviour, with higher yield stress and ductility but no damage. In agreement with a proposed rheological model, these experiments illustrate a transition from a ductile mechanical behaviour of bone at the microscale to a quasi-brittle response driven by the growth of cracks along interfaces or in the vicinity of pores at the macroscale.
机译:老龄化社会的骨折发生率越来越高。骨强度取决于通过临床光密度法测量的矿物质含量,还取决于骨骼的层次组织的微机械特性。在这里,我们研究了单骨板片和包含大量骨的宏观样品在单调和循环压缩下的机械响应。在干燥的羊骨上进行了扫描电子显微镜中的微柱压缩试验,显微压痕和宏观压缩试验,以确定弹性模量,屈服应力,塑性变形,损伤积累和破坏机理。我们发现,分离的薄片表现出塑性行为,具有较高的屈服应力和延展性,但没有损坏。与拟议的流变模型相一致,这些实验说明了从微观尺度上的骨骼的延性力学行为到宏观尺度上沿界面或孔隙附近的裂纹增长驱动的准脆性响应的转变。

著录项

  • 来源
    《Nature Materials》 |2014年第7期|740-747|共8页
  • 作者单位

    Institute for Surgical Technology and Biomechanics, University of Bern, Stauffacherstr. 78, CH-3014 Bern, Switzerland;

    EMPA, Swiss Federal Laboratories for Material Science and Technology, Laboratory of Mechanics of Materials and Nanostructures, Feuerwerkerstr. 39, CH-3602 Thun, Switzerland,Max-Planck-Institut fuer Eisenforschung, Structure and Nano/Micromechanics of Materials, Max-Planck.Str. 1, D-40237 Duesseldorf, Germany;

    Institute for Surgical Technology and Biomechanics, University of Bern, Stauffacherstr. 78, CH-3014 Bern, Switzerland;

    EMPA, Swiss Federal Laboratories for Material Science and Technology, Laboratory of Mechanics of Materials and Nanostructures, Feuerwerkerstr. 39, CH-3602 Thun, Switzerland;

    Institute for Surgical Technology and Biomechanics, University of Bern, Stauffacherstr. 78, CH-3014 Bern, Switzerland;

    EMPA, Swiss Federal Laboratories for Material Science and Technology, Laboratory of Mechanics of Materials and Nanostructures, Feuerwerkerstr. 39, CH-3602 Thun, Switzerland;

    Institute for Surgical Technology and Biomechanics, University of Bern, Stauffacherstr. 78, CH-3014 Bern, Switzerland;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号