首页> 外文期刊>Nature Materials >Dirac electron states formed at the heterointerface between a topological insulator and a conventional semiconductor
【24h】

Dirac electron states formed at the heterointerface between a topological insulator and a conventional semiconductor

机译:在拓扑绝缘体和常规半导体之间的异质界面处形成的狄拉克电子态

获取原文
获取原文并翻译 | 示例
           

摘要

Topological insulators are a class of semiconductor exhibiting charge-gapped insulating behaviour in the bulk, but hosting a spin-polarized massless Dirac electron state at the surface1"4. The presence of a topologically protected helical edge channel has been verified for the vacuum-facing surface of several topological insulators by means of angle-resolved photoemission spectroscopy and scanning tunnelling microscopy. By performing tunnelling spectroscopy on heterojunction devices composed of p-type topological insulator (Bi_(1-x)Sb_x)_2Te_3 and n-type conventional semiconductor InP, we report the observation of such states at the solid-state interface. Under an applied magnetic field, we observe a resonance in the tunnelling conductance through the heterojunction due to the formation of Landau levels of two-dimensional Dirac electrons at the interface. Moreover, resonant tunnelling spectroscopy reveals a systematic dependence of the Fermi velocity and Dirac point energy on the composition x. The successful formation of robust non-trivial edge channels at a solid-state interface is an essential step towards functional junctions based on topological insulators.
机译:拓扑绝缘体是一类半导体,在本体中具有电荷隙绝缘性能,但在表面1“ 4上具有自旋极化的无质量Dirac电子态。已经验证了存在真空拓扑的螺旋边缘通道的存在通过角分辨光电子能谱和扫描隧道显微镜观察几种拓扑绝缘体的表面,对由p型拓扑绝缘体(Bi_(1-x)Sb_x)_2Te_3和n型常规半导体InP组成的异质结器件进行隧穿光谱,我们报告了在固态界面上观察到的这种状态,在施加磁场的情况下,由于在界面上形成二维狄拉克电子的朗道能级,我们观察到通过异质结的隧穿电导发生了共振。共振隧穿光谱揭示了费米速度和狄拉克点能量对化合物的系统依赖性位置x。在固态界面上成功形成健壮的非平凡边缘通道是迈向基于拓扑绝缘体的功能性连接的必不可少的步骤。

著录项

  • 来源
    《Nature Materials》 |2014年第3期|253-257|共5页
  • 作者单位

    Department of Applied Physics and Quantum-Phase Electronics Center (QPEC), University of Tokyo, Tokyo 113-8656, Japan;

    Department of Applied Physics and Quantum-Phase Electronics Center (QPEC), University of Tokyo, Tokyo 113-8656, Japan,Department of Advanced Materials Science, University of Tokyo, Kashiwa, Chiba 277-8561, Japan,Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan;

    Department of Applied Physics and Quantum-Phase Electronics Center (QPEC), University of Tokyo, Tokyo 113-8656, Japan;

    Department of Applied Physics and Quantum-Phase Electronics Center (QPEC), University of Tokyo, Tokyo 113-8656, Japan;

    RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan;

    Department of Applied Physics and Quantum-Phase Electronics Center (QPEC), University of Tokyo, Tokyo 113-8656, Japan,RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan;

    Department of Applied Physics and Quantum-Phase Electronics Center (QPEC), University of Tokyo, Tokyo 113-8656, Japan,RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号