首页> 外文期刊>Nature Materials >Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS_2
【24h】

Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS_2

机译:通过有机插入层状过渡金属二卤化钛TiS_2的柔性n型热电材料

获取原文
获取原文并翻译 | 示例
           

摘要

Organic semiconductors are attracting increasing interest as flexible thermoelectric materials owing to material abundance, easy processing and low thermal conductivity. Although progress in p-type polymers and composites has been reported, their n-type counterpart has fallen behind owing to difficulties in n-type doping of organic semiconductors. Here, we present an approach to synthesize n-type flexible thermoelectric materials through a facile electrochemical intercalation method, fabricating a hybrid superlattice of alternating inorganic TiS_2 monolayers and organic cations. Electrons were externally injected into the inorganic layers and then stabilized by organic cations, providing n-type carriers for current and energy transport. An electrical conductivity of 790 S cm~(-1) and a power factor of 0.45 mW m~(-1) K~(-2) were obtained for a hybrid superlattice of TiS_2/[(hexylammonium)_x(H_2O)_y(DMSO)_z], with an in-plane lattice thermal conductivity of 0.12 ± 0.03 W m~(-1) K~(-1), which is two orders of magnitude smaller than the thermal conductivities of the single-layer and bulk TiS_2. High power factor and low thermal conductivity contributed to a thermoelectric figure of merit, ZT, of 0.28 at 373 K, which might find application in wearable electronics.
机译:由于材料丰富,易于加工和导热系数低,有机半导体作为柔性热电材料越来越受到人们的关注。尽管已经报道了p型聚合物和复合材料的进展,但是由于有机半导体的n型掺杂困难,它们的n型对应物已经落后。在这里,我们提出了一种通过简便的电化学嵌入方法合成n型柔性热电材料的方法,该方法可制造出交替的无机TiS_2单层和有机阳离子的混合超晶格。电子从外部注入到无机层中,然后被有机阳离子稳定,从而为电流和能量传输提供n型载流子。 TiS_2 / [(己基铵)_x(H_2O)_y()的混合超晶格的电导率为790 S cm〜(-1),功率因数为0.45 mW m〜(-1)K〜(-2) DMSO)_z],其面内晶格热导率为0.12±0.03 W m〜(-1)K〜(-1),比单层和块体TiS_2的热导率小两个数量级。高功率因数和低导热率导致373 K时的热电品质因数ZT为0.28,这可能会在可穿戴电子产品中得到应用。

著录项

  • 来源
    《Nature Materials》 |2015年第6期|622-627|共6页
  • 作者单位

    Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan,State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China;

    Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA;

    Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan;

    Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan;

    College of Material Science and Engineering, Nanjing University of Technology, Nanjing 210009, China;

    Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan;

    Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan;

    KOBELCO Research Institute, Kobe, Hyogo 651-2271, Japan;

    KOBELCO Research Institute, Kobe, Hyogo 651-2271, Japan;

    Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA;

    Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA;

    Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号