...
首页> 外文期刊>Nature Materials >Highly efficient and tunable spin-to-charge conversion through Rashba coupling at oxide interfaces
【24h】

Highly efficient and tunable spin-to-charge conversion through Rashba coupling at oxide interfaces

机译:通过氧化物界面上的Rashba耦合实现高效且可调的自旋至电荷转换

获取原文
获取原文并翻译 | 示例
           

摘要

The spin-orbit interaction couples the electrons' motion to their spin. As a result, a charge current running through a material with strong spin-orbit coupling generates a transverse spin current (spin Hall effect, SHE) and vice versa (inverse spin Hall effect, ISHE). The emergence of SHE and ISHE as charge-to-spin interconversion mechanisms offers a variety of novel spintronic functionalities and devices, some of which do not require any ferromagnetic material. However, the interconversion efficiency of SHE and ISHE (spin Hall angle) is a bulk property that rarely exceeds ten percent, and does not take advantage of interfacial and low-dimensional effects otherwise ubiquitous in spintronic hetero- and mesostructures. Here, we make use of an interface-driven spin-orbit coupling mechanism-the Rashba effect-in the oxide two-dimensional electron system (2DES) LaAlO_3/SrTiO_3 to achieve spin-to-charge conversion with unprecedented efficiency. Through spin pumping, we inject a spin current from a NiFe film into the oxide 2DES and detect the resulting charge current, which can be strongly modulated by a gate voltage. We discuss the amplitude of the effect and its gate dependence on the basis of the electronic structure of the 2DES and highlight the importance of a long scattering time to achieve efficient spin-to-charge interconversion.
机译:自旋轨道相互作用将电子的运动与其自旋耦合。结果,流过具有强自旋轨道耦合的材料的电荷电流会产生横向自旋电流(自旋霍耳效应,SHE),反之亦然(反向自旋霍耳效应,ISHE)。 SHE和ISHE作为电荷自旋互变机制的出现提供了多种新颖的自旋电子功能和器件,其中一些不需要任何铁磁材料。但是,SHE和ISHE的互转换效率(自旋霍尔角)是一个体积特性,很少超过百分之十,并且没有利用自旋电子异质和介观结构中普遍存在的界面和低维效应。在这里,我们利用氧化物二维电子系统LaAlO_3 / SrTiO_3中界面驱动的自旋轨道耦合机制(Rashba效应)来实现空转效率的空转。通过自旋泵浦,我们将自NiFe膜中的自旋电流注入到氧化物2DES中,并检测所产生的电荷电流,该电荷电流可由栅极电压强烈调制。我们基于2DES的电子结构讨论了效应的幅度及其对栅极的依赖性,并强调了长散射时间对于实现有效的自旋至电荷互转换的重要性。

著录项

  • 来源
    《Nature Materials》 |2016年第12期|1261-1266|共6页
  • 作者单位

    Unite Mixte de Physique, CNRS, Thales, Univ. Paris-Sud, Universite Paris-Saclay, 91767 Palaiseau, France,Max-Planck-Institute fuer Mikrostrukturphysik, Weinberg 2, 06120 Halle, Germany;

    Spintec, Institut Nanosciences et Cryogenie, Univ. Grenoble Alpes, CEA, CNRS, F-38000 Grenoble, France;

    Spintec, Institut Nanosciences et Cryogenie, Univ. Grenoble Alpes, CEA, CNRS, F-38000 Grenoble, France,Departamento de Fisica, CEDENNA, Universidad de Santiago de Chile (USACH), Avenida Ecuador 3493, 9170124 Santiago, Chile;

    Unite Mixte de Physique, CNRS, Thales, Univ. Paris-Sud, Universite Paris-Saclay, 91767 Palaiseau, France,Institut Jean Lamour (UMR CNRS 7198), Universite de Lorraine, 54500 Vandoeuvre-les-Nancy, France;

    Unite Mixte de Physique, CNRS, Thales, Univ. Paris-Sud, Universite Paris-Saclay, 91767 Palaiseau, France;

    Unite Mixte de Physique, CNRS, Thales, Univ. Paris-Sud, Universite Paris-Saclay, 91767 Palaiseau, France,Tohoku University, Department of Applied Physics, 6-6-05 Aoba, Aramaki, Aoba, Sendai 980-8579, Japan;

    Institut Nanosciences et Cryogenie, Univ. Grenoble Alpes, CEA, F-38000 Grenoble, France;

    Spintec, Institut Nanosciences et Cryogenie, Univ. Grenoble Alpes, CEA, CNRS, F-38000 Grenoble, France;

    Spintec, Institut Nanosciences et Cryogenie, Univ. Grenoble Alpes, CEA, CNRS, F-38000 Grenoble, France;

    Unite Mixte de Physique, CNRS, Thales, Univ. Paris-Sud, Universite Paris-Saclay, 91767 Palaiseau, France;

    Unite Mixte de Physique, CNRS, Thales, Univ. Paris-Sud, Universite Paris-Saclay, 91767 Palaiseau, France;

    Unite Mixte de Physique, CNRS, Thales, Univ. Paris-Sud, Universite Paris-Saclay, 91767 Palaiseau, France;

    Unite Mixte de Physique, CNRS, Thales, Univ. Paris-Sud, Universite Paris-Saclay, 91767 Palaiseau, France;

    Unite Mixte de Physique, CNRS, Thales, Univ. Paris-Sud, Universite Paris-Saclay, 91767 Palaiseau, France;

    Unite Mixte de Physique, CNRS, Thales, Univ. Paris-Sud, Universite Paris-Saclay, 91767 Palaiseau, France;

    Spintec, Institut Nanosciences et Cryogenie, Univ. Grenoble Alpes, CEA, CNRS, F-38000 Grenoble, France;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号