...
首页> 外文期刊>Nature Materials >Measurement of the spin temperature of optically cooled nuclei and GaAs hyperfine constants in GaAs/AIGaAs quantum dots
【24h】

Measurement of the spin temperature of optically cooled nuclei and GaAs hyperfine constants in GaAs/AIGaAs quantum dots

机译:GaAs / AIGaAs量子点中光学冷却核的自旋温度和GaAs超精细常数的测量

获取原文
获取原文并翻译 | 示例
           

摘要

Deep cooling of electron and nuclear spins is equivalent to achieving polarization degrees close to 100% and is a key requirement in solid-state quantum information technologies. While polarization of individual nuclear spins in diamond2 and SiC (ref. 3) reaches 99% and beyond, it has been limited to 50-65% for the nuclei in quantum dots. Theoretical models have attributed this limit to formation of coherent 'dark' nuclear spin states but experimental verification is lacking, especially due to the poor accuracy of polarization degree measurements. Here we measure the nuclear polarization in GaAs/AIGaAs quantum dots with high accuracy using a new approach enabled by manipulation of the nuclear spin states with radiofrequency pulses. Polarizations up to 80% are observed—the highest reported so far for optical cooling in quantum dots. This value is still not limited by nuclear coherence effects. Instead we find that optically cooled nuclei are well described within a classical spin temperature framework. Our findings unlock a route for further progress towards quantum dot electron spin qubits where deep cooling of the mesoscopic nuclear spin ensemble is used to achieve long qubit coherence. Moreover, GaAs hyperfine material constants are measured here experimentally for the first time.
机译:电子和核自旋的深度冷却等效于实现接近100%的极化度,并且是固态量子信息技术的关键要求。虽然Diamond2和SiC(参考文献3)中单个核自旋的极化率达到了99%或更高,但量子点中的核子却被限制在50-65%之间。理论模型将此限制归因于相干“暗”核自旋态的形成,但缺乏实验验证,尤其是由于极化度测量的准确性较差。在这里,我们使用一种新方法测量GaAs / AIGaAs量子点中的核极化,该新方法通过利用射频脉冲操纵核自旋态而实现。观察到高达80%的极化,这是迄今为止量子点中光学冷却的最高记录。该值仍然不受核相干效应的限制。相反,我们发现光学冷却的原子核在经典的自旋温度框架内得到了很好的描述。我们的发现为量子点电子自旋量子位进一步发展开辟了一条途径,在这种方法中,介观核自旋集合体的深冷被用来实现长量子位相干性。此外,GaAs超细材料常数是首次在此进行实验测量。

著录项

  • 来源
    《Nature Materials》 |2017年第10期|982-986|共5页
  • 作者单位

    Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, UK;

    Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, UK,School of Science and Engineering, Lahore University of Management Sciences (LUMS), Sector U, D.H.A, Lahore 54792, Pakistan;

    Institute for Integrative Nanoscience, IFW Dresden, Helmholtz str. D-01069, Dresden, Germany,Paul-Drude-lnstitut fur Festkorperelektronik, Hausvogteiplatz 5-7,10117 Berlin, Germany;

    Institute for Integrative Nanoscience, IFW Dresden, Helmholtz str. D-01069, Dresden, Germany,Institut fur Festkorperphysik, Leibniz Universitat Hannover, Appelstrasse 2, 30167 Hannover, Germany;

    Institute for Integrative Nanoscience, IFW Dresden, Helmholtz str. D-01069, Dresden, Germany;

    Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, UK;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号