...
首页> 外文期刊>Nature Materials >Charge-transfer dynamics and nonlocal dielectric permittivity tuned with metamaterial structures as solvent analogues
【24h】

Charge-transfer dynamics and nonlocal dielectric permittivity tuned with metamaterial structures as solvent analogues

机译:通过超材料结构作为溶剂类似物调整电荷转移动力学和非局部介电常数

获取原文
获取原文并翻译 | 示例
           

摘要

Charge transfer (CT) is a fundamental and ubiquitous mechanism in biology, physics and chemistry. Here, we evidence that CT dynamics can be altered by multi-layered hyperbolic metamaterial (HMM) substrates. Taking triphenylene:perylene diimide dyad supramolecular self-assemblies as a model system, we reveal longer-lived CT states in the presence of HMM structures, with both charge separation and recombination characteristic times increased by factors of 2.4 and 1.7-that is, relative variations of 140 and 73%, respectively. To rationalize these experimental results in terms of driving force, we successfully introduce image dipole interactions in Marcus theory. The non-local effect herein demonstrated is directly linked to the number of metal-dielectric pairs, can be formalized in the dielectric permittivity, and is presented as a solid analogue to local solvent polarity effects. This model and extra PH3T:PC60BM results show the generality of this non-local phenomenon and that a wide range of kinetic tailoring opportunities can arise from substrate engineering. This work paves the way toward the design of artificial substrates to control CT dynamics of interest for applications in optoelectronics and chemistry.
机译:电荷转移(CT)是生物学,物理学和化学领域中一种基本且普遍存在的机制。在这里,我们证明多层双曲超材料(HMM)衬底可以改变CT动力学。以三亚苯基:per二酰亚胺二元超分子自组装为模型系统,我们发现存在HMM结构时寿命更长的CT状态,电荷分离和重组特征时间都增加了2.4和1.7倍,即相对变化分别为140%和73%。为了根据驱动力合理化这些实验结果,我们在马库斯理论中成功引入了图像偶极子相互作用。本文证明的非局部效应与金属-电介质对的数量直接相关,可以形式化为介电常数,并作为局部溶剂极性效应的固体类似物呈现。该模型和额外的PH3T:PC60BM结果显示出这种非局部现象的普遍性,并且底物工程学可以产生广泛的动力学调整机会。这项工作为设计用于控制光电子学和化学领域中感兴趣的CT动态的人造基板的设计铺平了道路。

著录项

  • 来源
    《Nature Materials》 |2017年第7期|722-729|共8页
  • 作者单位

    Department of Physics, CNRS-Ewha International Research Center, Ewha Womans University, Seoul 03760, South Korea;

    Department of Physics, CNRS-Ewha International Research Center, Ewha Womans University, Seoul 03760, South Korea,Sorbonne Universites, UPMC Univ. Paris 06, CNRS, Institut Parisien de Chimie Moleculaire, UMR 8232, Chimie des Polymeres, 4 place Jussieu, 75005 Paris, France;

    Department of Physics, CNRS-Ewha International Research Center, Ewha Womans University, Seoul 03760, South Korea,Center for Length, Division of Physical Metrology, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, South Korea;

    Department of Physics, CNRS-Ewha International Research Center, Ewha Womans University, Seoul 03760, South Korea;

    Sorbonne Universites, UPMC Univ. Paris 06, CNRS, Institut Parisien de Chimie Moleculaire, UMR 8232, Chimie des Polymeres, 4 place Jussieu, 75005 Paris, France;

    Sorbonne Universites, UPMC Univ. Paris 06, CNRS, Institut Parisien de Chimie Moleculaire, UMR 8232, Chimie des Polymeres, 4 place Jussieu, 75005 Paris, France;

    Sorbonne Universites, UPMC Univ. Paris 06, CNRS, Institut Parisien de Chimie Moleculaire, UMR 8232, Chimie des Polymeres, 4 place Jussieu, 75005 Paris, France;

    Department of Physics, CNRS-Ewha International Research Center, Ewha Womans University, Seoul 03760, South Korea,OPERA, Kyushu University, Fukuoka 819-0388, Japan;

    Department of Physics, CNRS-Ewha International Research Center, Ewha Womans University, Seoul 03760, South Korea;

    Department of Physics, CNRS-Ewha International Research Center, Ewha Womans University, Seoul 03760, South Korea,RIKEN, Wako, Saitama 351-0198, Japan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号