...
首页> 外文期刊>Nature Materials >Terahertz circular dichroism spectroscopy of biomaterials enabled by kirigami polarization modulators
【24h】

Terahertz circular dichroism spectroscopy of biomaterials enabled by kirigami polarization modulators

机译:Kirigami偏振调制器实现的生物材料的太赫兹圆二色光谱

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Terahertz circular dichroism (TCD) offers multifaceted spectroscopic capabilities for understanding the mesoscale chiral architecture and low-energy vibrations of macromolecules in (bio) materials(1-5). However, the lack of dynamic polarization modulators comparable to polarization optics for other parts of the electromagnetic spectrum is impeding the proliferation of TCD spectroscopy(6-11). Here we show that tunable optical elements fabricated from patterned plasmonic sheets with periodic kirigami cuts make possible the polarization modulation of terahertz radiation under application of mechanical strain. A herringbone pattern of microscale metal stripes enables a dynamic range of polarization rotation modulation exceeding 80 degrees over thousands of cycles. Following out-ofplane buckling, the plasmonic stripes function as reconfigurable semi-helices of variable pitch aligned along the terahertz propagation direction. Several biomaterials, exemplified by an elytron of the Chrysina gloriosa, revealed distinct TCD fingerprints associated with the helical substructure in the biocomposite. Analogous kirigami modulators will also enable other applications in terahertz optics, such as polarization-based terahertz imaging, line-of-sight telecommunication, information encryption and space exploration.
机译:太赫兹圆二色性(TCD)提供了多方面的光谱学功能,可用于了解(生物)材料中中尺度的手性结构和大分子的低能振动(1-5)。但是,缺少与电磁光谱其他部分的偏振光学器件可比的动态偏振调制器,这阻碍了TCD光谱学的发展(6-11)。在这里,我们显示了由具有周期性krigami切口的图案化等离激元板制造的可调谐光学元件,在施加机械应变的情况下使太赫兹辐射的偏振调制成为可能。微米级金属条纹的人字形图案使偏振旋转调制的动态范围在数千个循环中超过80度。在面外屈曲之后,等离激元条纹起沿太赫兹传播方向排列的可变节距的可重构半螺旋的作用。几种生物材料,例如Chrysina gloriosa的电子致密剂,揭示了与生物复合物中螺旋亚结构相关的独特TCD指纹。相似的激折线调制器还将使太赫兹光学中的其他应用成为可能,例如基于偏振的太赫兹成像,视距电信,信息加密和太空探索。

著录项

  • 来源
    《Nature Materials》 |2019年第8期|820-826|共7页
  • 作者单位

    Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA;

    Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA|Univ Michigan, Ctr Ultrafast Opt Sci, Ann Arbor, MI 48109 USA;

    Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA;

    Univ Michigan, Taubman Coll Architecture & Urban Planning, Ann Arbor, MI 48109 USA;

    Univ Michigan, Ctr Ultrafast Opt Sci, Ann Arbor, MI 48109 USA|Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA;

    Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA|Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA|Univ Michigan, Program Macromol Sci & Engn, Ann Arbor, MI 48109 USA|Univ Michigan, Biointerfaces Inst, Ann Arbor, MI 48109 USA|Michigan Inst Translat Nanotechnol, Ypsilanti, MI 48197 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号