首页> 外文期刊>Natural Hazards >Potentials and constraints of different types of soil moisture observations for flood simulations in headwater catchments
【24h】

Potentials and constraints of different types of soil moisture observations for flood simulations in headwater catchments

机译:水源流域洪水模拟中不同类型土壤湿度观测的潜力和约束条件

获取原文
获取原文并翻译 | 示例
       

摘要

Flood generation in mountainous headwater catchments is governed by rainfall intensities, by the spatial distribution of rainfall and by the state of the catchment prior to the rainfall, e.g. by the spatial pattern of the soil moisture, groundwater conditions and possibly snow. The work presented here explores the limits and potentials of measuring soil moisture with different methods and in different scales and their potential use for flood simulation. These measurements were obtained in 2007 and 2008 within a comprehensive multi-scale experiment in the Weisseritz headwater catchment in the Ore-Mountains, Germany. The following technologies have been applied jointly thermogravimetric method, frequency domain reflectometry (FDR) sensors, spatial time domain reflectometry (STDR) cluster, ground-penetrating radar (GPR), airborne polarimetric synthetic aperture radar (polarimetric SAR) and advanced synthetic aperture radar (ASAR) based on the satellite Envisat. We present exemplary soil measurement results, with spatial scales ranging from point scale, via hillslope and field scale, to the catchment scale. Only the spatial TDR cluster was able to record continuous data. The other methods are limited to the date of over-flights (airplane and satellite) or measurement campaigns on the ground. For possible use in flood simulation, the observation of soil moisture at multiple scales has to be combined with suitable hydrological modelling, using the hydrological model WaSiM-ETH. Therefore, several simulation experiments have been conducted in order to test both the usability of the recorded soil moisture data and the suitability of a distributed hydrological model to make use of this information. The measurement results show that airborne-based and satellite-based systems in particular provide information on the near-surface spatial distribution. However, there are still a variety of limitations, such as the need for parallel ground measurements (Envisat ASAR), uncertainties in polarimetric decomposition techniques (polarimetric SAR), very limited information from remote sensing methods about vegetated surfaces and the non-availability of continuous measurements. The model experiments showed the importance of soil moisture as an initial condition for physically based flood modelling. However, the observed moisture data reflect the surface or near-surface soil moisture only. Hence, only saturated overland flow might be related to these data. Other flood generation processes influenced by catchment wetness in the subsurface such as subsurface storm flow or quick groundwater drainage cannot be assessed by these data. One has to acknowledge that, in spite of innovative measuring techniques on all spatial scales, soil moisture data for entire vegetated catchments are still today not operationally available. Therefore, observations of soil moisture should primarily be used to improve the quality of continuous, distributed hydrological catchment models that simulate the spatial distribution of moisture internally. Thus, when and where soil moisture data are available, they should be compared with their simulated equivalents in order to improve the parameter estimates and possibly the structure of the hydrological model.
机译:山区水源流域的洪水产生取决于降雨强度,降雨的空间分布以及降雨之前的集水区状态,例如降雨。取决于土壤水分,地下水条件和可能的降雪的空间格局。本文介绍的工作探索了用不同方法,不同规模测量土壤湿度的局限性和潜力,以及它们在洪水模拟中的潜在用途。这些测量值是在2007年和2008年通过德国Ore-Mountains的Weisseritz水源流域的综合多尺度实验获得的。以下技术已被联合应用,包括热重法,频域反射法(FDR)传感器,空间时域反射法(STDR)簇,探地雷达(GPR),机载极化合成孔径雷达(极化SAR)和高级合成孔径雷达( ASAR)基于Envisat卫星。我们展示了示例性的土壤测量结果,其空间尺度范围从点尺度(通过坡度和田间尺度)到集水区尺度。只有空间TDR群集能够记录连续数据。其他方法仅限于飞越(飞机和卫星)或在地面进行测量活动的日期。为了可能在洪水模拟中使用,必须使用WaSiM-ETH水文模型将多种尺度下的土壤湿度观测与适当的水文建模相结合。因此,为了测试记录的土壤水分数据的可用性和分布式水文模型利用该信息的适用性,已经进行了几次模拟实验。测量结果表明,机载和卫星系统尤其提供了近地表空间分布的信息。但是,仍然存在多种局限性,例如需要进行平行地面测量(Envisat ASAR),极化分解技术(极化极化SAR)的不确定性,来自遥感方法的有关植被表面的信息非常有限以及无法获得连续的测量。模型实验表明,土壤水分作为基于物理的洪水建模的初始条件的重要性。但是,观测到的水分数据仅反映了表层或近表层土壤的水分。因此,只有饱和的陆上径流可能与这些数据有关。这些数据无法评估受地下集水区湿度影响的其他洪水产生过程,例如地下暴雨流量或快速的地下水排泄。必须承认,尽管在所有空间尺度上都有创新的测量技术,但今天仍然无法获得整个植被流域的土壤湿度数据。因此,对土壤水分的观测应主要用于提高模拟内部水分空间分布的连续分布式水文集水模型的质量。因此,在有土壤湿度数据的地方和时间,应将其与模拟的等效数据进行比较,以改善参数估计值,并可能改善水文模型的结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号