...
首页> 外文期刊>Monthly Notices of the Royal Astronomical Society >High-order magnetohydrodynamics for astrophysics with an adaptive mesh refinement discontinuous Galerkin scheme
【24h】

High-order magnetohydrodynamics for astrophysics with an adaptive mesh refinement discontinuous Galerkin scheme

机译:自适应网格细化的不连续Galerkin方案用于天体物理学的高阶磁流体动力学

获取原文
获取原文并翻译 | 示例

摘要

Modern astrophysical simulations aim to accurately model an ever-growing array of physical processes, including the interaction of fluids with magnetic fields, under increasingly stringent performance and scalability requirements driven by present-day trends in computing architectures. Discontinuous Galerkin (DG) methods have recently gained some traction in astrophysics, because of their arbitrarily high order and controllable numerical diffusion, combined with attractive characteristics for high-performance computing. In this paper, we describe and test our implementation of a DG scheme for ideal magnetohydrodynamics (MHD) in the AREPO-DG code. Our DG-MHD scheme relies on a modal expansion of the solution on Legendre polynomials inside the cells of an Eulerian octree-based adaptive mesh refinement grid. The divergence-free constraint of the magnetic field is enforced using one out of two distinct cell-centred schemes: either a Powell-type scheme based on non-conservative source terms, or a hyperbolic divergence cleaning method. The Powell scheme relies on a basis of locally divergence-free vector polynomials inside each cell to represent the magnetic field. Limiting prescriptions are implemented to ensure non-oscillatory and positive solutions. We show that the resulting scheme is accurate and robust: it can achieve high-order and low numerical diffusion, as well as accurately capture strong MHD shocks. In addition, we show that our scheme exhibits a number of attractive properties for astrophysical simulations, such as lower advection errors and better Galilean invariance at reduced resolution, together with more accurate capturing of barely resolved flow features. We discuss the prospects of our implementation, and DG methods in general, for scalable astrophysical simulations.
机译:现代天体物理模拟旨在在日益严格的性能和可扩展性要求(由计算架构的当今趋势驱动)的情况下,精确建模不断增长的物理过程阵列,包括流体与磁场的相互作用。不连续伽勒金(DG)方法由于其任意高阶和可控制的数值扩散以及吸引人的高性能计算特性,最近在天体物理学中获得了一定的关注。在本文中,我们描述并测试了AREPO-DG代码中用于理想磁流体动力学(MHD)的DG方案的实现。我们的DG-MHD方案依赖于基于欧拉八叉树的自适应网格细化网格的像元内部的Legendre多项式的解的模态展开。使用两种不同的以电池为中心的方案中的一种来强制执行磁场的无散度约束:基于非保守源项的Powell型方案或双曲线散度清理方法。鲍威尔方案基于每个单元内部的无局部散度矢量多项式来表示磁场。实施了限制处方,以确保非振荡和积极的解决方案。我们证明了所得方案是准确而稳健的:它可以实现高阶和低数值扩散,并且可以准确捕获强大的MHD冲击。此外,我们证明了我们的方案对天体物理模拟具有许多吸引人的特性,例如,较低的对流误差和较好的伽利略不变性(在降低的分辨率下),以及更精确地捕获几乎未解析的流动特征。我们讨论了可扩展的天体物理模拟的实施前景,以及一般的DG方法。

著录项

  • 来源
    《Monthly Notices of the Royal Astronomical Society》 |2019年第3期|4209-4246|共38页
  • 作者单位

    Heidelberg Inst Theoret Studies, Schloss Wolfsbrunnenweg 35, D-69118 Heidelberg, Germany|Heidelberg Univ, Astronom Rechen Inst, Zentrum Astron, Monchhofstr 12-14, D-69120 Heidelberg, Germany|Univ Exeter, Dept Phys & Astron, Stocker Rd, Exeter EX4 4QL, Devon, England;

    Heidelberg Inst Theoret Studies, Schloss Wolfsbrunnenweg 35, D-69118 Heidelberg, Germany|Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany;

    Heidelberg Inst Theoret Studies, Schloss Wolfsbrunnenweg 35, D-69118 Heidelberg, Germany|Heidelberg Univ, Astronom Rechen Inst, Zentrum Astron, Monchhofstr 12-14, D-69120 Heidelberg, Germany|Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany;

    TIFR Ctr Applicable Math, Bangalore 560065, Karnataka, India;

    Univ Wurzburg, Dept Math, Emil Fischer Str 40, D-97074 Wurzburg, Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    hydrodynamics; MHD; shock waves; methods: numerical;

    机译:流体动力学;MHD;冲击波;方法:数值;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号