首页> 外文期刊>Molecular Simulation >Molecular simulations of thermal transport across interfaces: solid-vapour and solid-solid
【24h】

Molecular simulations of thermal transport across interfaces: solid-vapour and solid-solid

机译:跨界面传热的分子模拟:固体蒸气和固体-固体

获取原文
获取原文并翻译 | 示例
           

摘要

Using molecular simulations, we have investigated heat transfer across the solid-fluid interface between water and silicon and silica wafers, and solid-solid interfaces in superlattices and thin solid films. The system set-up has allowed us to focus on the resistance associated with both the fluid and solid interfaces. For instance, by maintaining the solid phase at a constant temperature we can focus solely on the fluid-side resistance. Our results show that the thermal or Kapitza resistance at fluid side of the solid-fluid decreases significantly as the surface is made more hydrophilic. This is primarily due to increases in fluid adsorption and absorption at the surface, which enhance the intermolecular collision frequency at the interface. Increasing this frequency also reduces the dependence of thermal transport on variations in the interfacial temperature and pressure. Hence, decreasing the density diminishes the intermolecular collision frequency, which increases the thermal resistance. By maintaining the fluid at a constant temperature we have also examined the interface resistance on the solid side. Our results show that these interfacial resistances can diminish the wall heat flux by an order of magnitude in comparison with a hypothetical system for which the overall fluid-solid contact resistances are negligible. Finally, we consider the solid phase as a superlattice in which case the interfacial resistances produced between different solid layers can significantly lower the heat transfer. Our simulations show significant resistance to thermal transport between thin films of the solid phase which constitute the superlattice, providing insight into how a superinsulator can be designed.View full textDownload full textKeywordsthermal transport, interfaces, solid-solid, fluid-solidRelated var addthis_config = { ui_cobrand: "Taylor & Francis Online", services_compact: "citeulike,netvibes,twitter,technorati,delicious,linkedin,facebook,stumbleupon,digg,google,more", pubid: "ra-4dff56cd6bb1830b" }; Add to shortlist Link Permalink http://dx.doi.org/10.1080/08927022.2012.678345
机译:使用分子模拟,我们研究了水与硅和二氧化硅晶片之间的固-液界面以及超晶格和固体薄膜中的固-固界面之间的传热。系统设置使我们可以专注于与流体和固体界面相关的阻力。例如,通过将固相保持在恒定温度下,我们可以只专注于流体侧的阻力。我们的结果表明,随着表面变得更亲水,固体流体的流体侧的热阻或Kapitza阻力显着降低。这主要是由于增加了流体在表面的吸附和吸收,从而增加了界面处的分子间碰撞频率。增加该频率还减少了热传输对界面温度和压力变化的依赖性。因此,减小密度减小了分子间碰撞频率,这增加了热阻。通过将流体保持在恒定温度下,我们还检查了固体侧的界面电阻。我们的结果表明,与假设的系统相比,这些界面电阻可以将壁热通量减小一个数量级,对于该系统而言,整体的流固接触电阻可忽略不计。最后,我们将固相视为超晶格,在这种情况下,不同固相层之间产生的界面电阻会显着降低传热。我们的仿真显示出构成超晶格的固相薄膜之间的热传递具有显着的抵抗力,从而提供了如何设计超级绝缘体的见解。查看全文下载全文关键词热传递,界面,固-固,流固相关ui_cobrand:“ Taylor&Francis Online”,service_compact:“ citeulike,netvibes,twitter,technorati,delicious,linkedin,facebook,stumbleupon,digg,google,更多”,发布:“ ra-4dff56cd6bb1830b”};添加到候选列表链接永久链接http://dx.doi.org/10.1080/08927022.2012.678345

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号