...
首页> 外文期刊>Molecular BioSystems >Modulation of an IDP binding mechanism and rates by helix propensity and non-native interactions: association of HIF1α with CBP
【24h】

Modulation of an IDP binding mechanism and rates by helix propensity and non-native interactions: association of HIF1α with CBP

机译:螺旋倾向和非天然相互作用对IDP结合机制和速率的调节:HIF1α与CBP的关联

获取原文
获取原文并翻译 | 示例

摘要

Intrinsically disordered proteins that acquire their three dimensional structures only upon binding to their targets are very important in cellular signal regulation. While experimental studies have been made on the structures of both bound (structured) and unbound (disordered) states, less is known about the actual folding-binding transition. Coarse grained simulations using native-centric (i.e. Go) potentials have been particularly useful in addressing this problem, given the large search space for IDP binding, but have well-known deficiencies in reproducing the unfolded state structure and dynamics. Here, we investigate the interaction of HIF1α with CBP using a hierarchy of coarse-grained models, in each case matching the binding affinity at 300 K to the experimental value. Starting from a pure Go-like model based on the native structure of the complex we go on to consider a more realistic model of helix propensity in the HIF1α, and finally the effect of non-native interactions between binding partners. We find structural disorder (i.e. "fuzziness") in the bound state of HIF1α in all models which is supported by the results of atomistic simulations. Correcting the over-stabilized helices in the unbound state gives rise to a more cooperative folding-binding transition (destabilizing partially bound intermediates). Adding non-native contacts lowers the free energy barrier for binding to an almost barrierless scenario, leading to higher binding/unbinding rates relative to the other models, in better agreement with the near diffusion-limited binding rates measured experimentally. Transition state structures for the three models are highly disordered, supporting a fly-casting mechanism for binding.
机译:仅在与靶标结合时才​​能获得其三维结构的内在无序蛋白在细胞信号调节中非常重要。虽然已经对结合状态(结构化)和未结合状态(无序)的结构进行了实验研究,但对实际折叠-结合转变的了解却很少。考虑到IDP绑定的巨大搜索空间,使用以本机为中心(即Go)电势的粗粒度模拟在解决此问题方面特别有用,但在再现展开状态结构和动力学方面存在众所周知的缺陷。在这里,我们使用层次结构粗糙的模型研究了HIF1α与CBP的相互作用,在每种情况下都将300 K的结合亲和力与实验值相匹配。从基于复合物天然结构的纯Go样模型开始,我们继续考虑更现实的HIF1α螺旋倾向模型,最后考虑结合伴侣之间非天然相互作用的影响。我们在所有模型中都发现HIF1α的结合状态存在结构紊乱(即“模糊性”),这得到了原子模拟结果的支持。在未结合状态下校正过度稳定的螺旋结构会导致更配合的折叠-结合转变(不稳定的部分结合中间体)。添加非本机接触会降低绑定到几乎无障碍场景的自由能垒,从而导致相对于其他模型而言更高的绑定/解绑定率,这与通过实验测得的接近扩散限制的绑定率更好地吻合。这三个模型的过渡状态结构高度无序,支持了绑定的苍蝇机制。

著录项

  • 来源
    《Molecular BioSystems 》 |2012年第1期| p.256-267| 共12页
  • 作者单位

    Cambridge University, Department of Chemistry, Lensfield Road, Cambridge CB2 1EW, UK;

    Cambridge University, Department of Chemistry, Lensfield Road, Cambridge CB2 1EW, UK;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号