...
首页> 外文期刊>Molecular BioSystems >Energetic and flexibility properties captured by long molecular dynamics simulations of a membrane-embedded pMHCII-TCR complex
【24h】

Energetic and flexibility properties captured by long molecular dynamics simulations of a membrane-embedded pMHCII-TCR complex

机译:通过膜嵌入的pMHCII-TCR复合物的长分子动力学模拟获得的能量和柔韧性

获取原文
获取原文并翻译 | 示例

摘要

Although crystallographic data have provided important molecular insight into the interactions in the pMHC-TCR complex, the inherent features of this structural approach cause it to only provide a static picture of the interactions. While unbiased molecular dynamics simulations (UMDSs) have provided important information about the dynamic structural behavior of the pMHC-TCR complex, most of them have modeled the pMHC-TCR complex as soluble, when in physiological conditions, this complex is membrane bound; therefore, following this latter UMDS protocol might hamper important dynamic results. In this contribution, we performed three independent 300 ns-long UMDSs of the pMHCII-TCR complex anchored in two opposing membranes to explore the structural and energetic properties of the recognition of pMHCII by the TCR. The conformational ensemble generated through UMDSs was subjected to clustering and Cartesian principal component analyses (cPCA) to explore the dynamical behavior of the pMHCII-TCR association. Furthermore, based on the conformational population sampled through UMDSs, the effective binding free energy, per-residue free energy decomposition, and alanine scanning mutations were explored for the native pMHCII-TCR complex, as well as for 12 mutations (pl-pl2MHCⅡ-TCR) introduced in the native peptide. Clustering analyses and cPCA provide insight into the rocking motion of the TCR onto pMHCII, together with the presence of new electrostatic interactions not observed through crystallographic methods. Energetic results provide evidence of the main contributors to the pMHC-TCR complex formation as well as the key residues involved in this molecular recognition process.
机译:尽管晶体学数据为pMHC-TCR复合物中的相互作用提供了重要的分子见解,但这种结构方法的固有特征使它只能提供相互作用的静态图像。尽管无偏分子动力学模拟(UMDSs)提供了有关pMHC-TCR复合物动力学结构行为的重要信息,但大多数人已将pMHC-TCR复合物建模为可溶的,而在生理条件下,该复合物是膜结合的。因此,遵循后一种UMDS协议可能会妨碍重要的动态结果。在这项贡献中,我们对锚定在两个相对膜中的pMHCII-TCR复合物进行了三个独立的300 ns长的UMDS,以探索TCR识别pMHCII的结构和能量特性。对通过UMDS生成的构象集合进行聚类和笛卡尔主成分分析(cPCA),以探索pMHCII-TCR关联的动力学行为。此外,根据通过UMDS采样的构象群体,探索了天然pMHCII-TCR复合物以及12个突变(pl-pl2MHCⅡ-TCR)的有效结合自由能,每个残基的自由能分解和丙氨酸扫描突变。 )引入天然肽中。聚类分析和cPCA可以洞悉TCR在pMHCII上的摇摆运动,以及通过晶体学方法未观察到的新静电相互作用。能量结果为pMHC-TCR复合物形成的主要贡献者以及该分子识别过程中涉及的关键残基提供了证据。

著录项

  • 来源
    《Molecular BioSystems 》 |2016年第4期| 1350-1366| 共17页
  • 作者单位

    Laboratorio de Modelado Molecular, Bioinformatica y Diseno de Farmacos de la Escuela Superior de Medicina, Instituto Politecnico Nacional, Plan de San Luis Y Diaz Miron S/N, Col. Casco de Santo Tomas, Mexico City, CP: 11340, Mexico;

    Laboratorio de Modelado Molecular, Bioinformatica y Diseno de Farmacos de la Escuela Superior de Medicina, Instituto Politecnico Nacional, Plan de San Luis Y Diaz Miron S/N, Col. Casco de Santo Tomas, Mexico City, CP: 11340, Mexico;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号