首页> 外文期刊>Molecular BioSystems >Network-based modelling and percolation analysis of conformational dynamics and activation in the CDK2 and CDK4 proteins: dynamic and energetic polarization of the kinase lobes may determine divergence of the regulatory mechanisms
【24h】

Network-based modelling and percolation analysis of conformational dynamics and activation in the CDK2 and CDK4 proteins: dynamic and energetic polarization of the kinase lobes may determine divergence of the regulatory mechanisms

机译:基于网络的CDK2和CDK4蛋白构象动力学和激活的建模和渗滤分析:激酶叶的动态极化和高能极化可能决定调节机制的差异

获取原文
获取原文并翻译 | 示例
           

摘要

The overarching goal of delineating molecular principles underlying differentiation of the activation mechanisms in cyclin-dependent kinases (CDKs) is important for understanding regulatory divergences among closely related kinases which can be exploited in drug discovery of targeted and allosteric inhibitors. To systematically characterize dynamic, energetic and network signatures of the activation mechanisms, we combined atomistic simulations and elastic network modeling with the analysis of the residue interaction networks and rigidity decomposition of the CDK2-cyclin A and CDK4-cyclin D1/D3 complexes. The results of this study show that divergences in the activation mechanisms of CDK2 and CDK4 may be determined by differences in stabilization and allosteric cooperativity of the regulatory regions. We show that differential stabilization of the kinase lobes in the CDK4-cyclin D complexes caused by the elevated mobility of the N-lobe residues can weaken allosteric interactions between regulatory regions and compromise cooperativity of the inter-lobe motions that is required to trigger activating transitions. Network modelling and percolation analysis were used to emulate thermal unfolding and perform decomposition of rigid and flexible regions in the CDK2 and CDK4 complexes. These simulations showed that the percolation phase transition in the CDK2-cyclin A complexes is highly cooperative and driven by allosteric coupling between functional regions from both kinase lobes. In contrast, the imbalances in the distribution of rigid and flexible regions for the CDK4- cyclin D complexes, which are manifested by the intrinsic instability of the N-lobe, may weaken allosteric interactions and preclude productive activation. The results of this integrative computational study offer a simple and robust network-based model that explains regulatory divergences between CDK2 and CDK4 kinases.
机译:描绘细胞周期蛋白依赖性激酶(CDKs)激活机制差异基础的分子原理的总体目标对于理解紧密相关激酶之间的调节差异非常重要,这种差异可用于靶向和变构抑制剂的药物发现。为了系统地表征激活机制的动态,能量和网络特征,我们将原子模拟和弹性网络建模与残基相互作用网络的分析以及CDK2-cyclin A和CDK4-cyclin D1 / D3配合物的刚性分解相结合。这项研究的结果表明,CDK2和CDK4激活机制的差异可能是由调节区域的稳定性和变构协同作用的差异决定的。我们表明,CDK4-细胞周期蛋白D复合物中激酶裂片的差异性稳定由N裂片残基的增加的迁移性引起,可以削弱调节区域之间的变构相互作用,并损害触发激活过渡所需的裂片间运动的协同作用。使用网络建模和渗滤分析来模拟热展开并执行CDK2和CDK4配合物中刚性和柔性区域的分解。这些模拟表明,CDK2-cyclin A复合物中的渗透相转变是高度协作的,并且受两个激酶叶的功能区之间的变构偶联驱动。相反,CDK4-细胞周期蛋白D复合物刚性和柔性区域分布的不平衡(由N瓣固有的不稳定性所表明)可能会削弱变构作用并阻止生产活化。这项综合计算研究的结果提供了一个简单而强大的基于网络的模型,该模型解释了CDK2和CDK4激酶之间的调节差异。

著录项

  • 来源
    《Molecular BioSystems》 |2017年第11期|2235-2253|共19页
  • 作者

    G. M. Verkhivker;

  • 作者单位

    Graduate Program in Computational and Data Sciences, Department of Computational Biosciences, Schmid College of Science and Technology,Chapman University, Orange, CA 92866, USA,Chapman University School of Pharmacy, Irvine, CA 92618, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号