...
首页> 外文期刊>Molecular BioSystems >Effects of flexibility and electrostatic interactions on the coupled binding-folding mechanisms of Chz.core and H2A.z-H2B
【24h】

Effects of flexibility and electrostatic interactions on the coupled binding-folding mechanisms of Chz.core and H2A.z-H2B

机译:柔韧性和静电相互作用对Chz.core和H2A.z-H2B偶联结合折叠机制的影响

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The intrinsically disordered protein (IDP) Chz.core, which is the interaction core of Chz1, shows binding preference to histone variant H2A.z. Although there are several studies on the binding process of Chz.core, the detailed coupled binding-folding processes are still elusive. In this study, we explored the coupled binding-folding mechanism and the effect of flexibility by continuously monitoring the flexibility degree of Chz.core. We applied an all-atom structure-based model (SBM), which takes advantage of providing both backbone and sidechain information about the conformational changes of Chz.core during binding. We presented a somewhat different "fly-casting" picture that the long IDP can undergo a tertiary stretching and bending with larger capture radii than ordered proteins. Our results suggest that the higher flexibility of Chz.core contributes to the shorter times for capturing events, leading to higher recognition efficiencies. In addition, compared to the ordered proteins, the high flexibility of the intrinsically disordered protein enables Chz.core to have a lower binding barrier and a faster association rate, which are favorable for the binding process to its partner H2A.z-H2B.
机译:固有无序蛋白(IDP)Chz.core是Chz1的相互作用核心,显示对组蛋白变体H2A.z的结合偏好。尽管对Chz.core的结合过程有一些研究,但详细的偶联结合-折叠过程仍然难以捉摸。在这项研究中,我们通过持续监控Chz.core的柔韧性程度,探索了偶联的结合折叠机制和柔韧性的影响。我们应用了基于全原子结构的模型(SBM),该模型利用了在绑定过程中提供有关Chz.core构象变化的主链和侧链信息的优势。我们提出了一些不同的“苍蝇铸像”图,即长IDP可以经历三次拉伸和弯曲,捕获半径比有序蛋白大。我们的结果表明,Chz.core的较高灵活性有助于缩短事件捕获时间,从而提高识别效率。此外,与有序蛋白相比,内在无序蛋白的高柔韧性使Chz.core具有更低的结合障碍和更快的缔合速率,这有利于与其伴侣H2A.z-H2B的结合过程。

著录项

  • 来源
    《Molecular BioSystems》 |2017年第10期|2152-2159|共8页
  • 作者单位

    College of Physics, Jilin University, Changchun 130012, China,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China;

    State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China;

    IMDEA-Nanociencia, Campus Cantoblanco, Madrid 28049, Spain;

    State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China;

    College of Physics, Jilin University, Changchun 130012, China;

    State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China ,Department of Chemistry & Physics, State University of New York at Stony Brook,Stony Brook, NY, 11794, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号