首页> 外文期刊>Molecular BioSystems >How RNase HI (Escherichia coli) promoted site-selective hydrolysis works on RNA in duplex with carba-LNA and LNA substituted antisense strands in an antisense strategy context?
【24h】

How RNase HI (Escherichia coli) promoted site-selective hydrolysis works on RNA in duplex with carba-LNA and LNA substituted antisense strands in an antisense strategy context?

机译:在反义策略的背景下,RNase HI(大肠杆菌)如何促进位点选择性水解作用在与碳纳米管LNA和LNA取代的反义链形成双链体的RNA上?

获取原文
获取原文并翻译 | 示例
           

摘要

A detailed kinetic study of 36 single modified AON-RNA heteroduplexes shows that substitution of a single native nucleotide in the antisense strand (AON) by locked nucleic acid (LNA) or by diastereomerically pure carba-LNA results in site-dependent modulation of RNase H promoted cleavage of complementary mRNA strands by 2 to 5 fold at 5'-GpN-3' cleavage sites, giving up to 70% of the RNA cleavage products. The experiments have been performed using RNase HI of Escherichia coli. The 2nd best cleavage site, being the 5'-ApN-3' sites, cleaves up to 23%, depending upon the substitution site in 36 isosequential complementary AONs. A comparison of the modified AON promoted RNA cleavage rates with that of the native AON shows that sequence-specificity is considerably enhanced as a result of modification. Clearly, relatively weaker 5'-purine (Pu)-pyrimidine (Py)-3' stacking in the complementary RNA strand is preferred (giving ~90% of total cleavage products), which plays an important role in RNase H promoted RNA cleavage. A plausible mechanism of RNase H mediated cleavage of the RNA has been proposed to be two-fold, dictated by the balancing effect of the aromatic character of the purine aglycone: first, the locally formed 9-guanylate ion (pK_a 9.3,~18-20% N1 ionized at pH 8) alters the adjoining sugar-phosphate backbone around the scissile phosphate, transforming its sugar N/S conformational equilibrium, to preferential S-type, causing preferential cleavage at 5'-GpN-3' sites around the center of 20 mer complementary mRNA. Second, the weaker nearest-neighbor strength of 5'-Pu-p-Py-3' stacking promotes preferential 5'-GpN-3' and 5'-ApN-3' cleavage, providing ~90% of the total products, compared to ~50% in that of the native one, because of the cLNA/LNA substituent effect on the neighboring 5'-Pu-p-Py-3' sites, providing both local steric flexibility and additional hydration. This facilitates both the water and water/Mg~(2+) ion availability at the cleavage site causing sequence-specific hydrolysis of the phosphodiester bond of scissile phosphate. The enhancement of the total rate of cleavage of the complementary mRNA strand by up to 25%, presented in this work, provides opportunities to engineer a single modification site in appropriately substituted AONs to design an effective antisense strategy based on the nucleolytic stability of the AON strand versus RNase H capability to cleave the complementary RNA strand.
机译:对36个单个修饰的AON-RNA异源双链体进行的详细动力学研究表明,反义链(AON)中的单个天然核苷酸被锁定核酸(LNA)或非对映体纯净的carba-LNA取代会导致RNase H的位点依赖性调节在5'-GpN-3'切割位点上,DNA促进了互补mRNA链的切割2至5倍,从而提供了多达70%的RNA切割产物。使用大肠杆菌的RNase HI进行了实验。最佳的第二个切割位点是5'-ApN-3'位点,切割最高可达23%,具体取决于36个等序互补AON中的取代位点。修饰的AON促进的RNA切割速率与天然AON的切割速率的比较显示,由于修饰,序列特异性显着增强。显然,在互补RNA链中相对较弱的5'-嘌呤(Pu)-嘧啶(Py)-3'堆积是首选(占总裂解产物的约90%),这在RNase H促进的RNA裂解中起着重要作用。有人提出,RNA酶H介导的RNA裂解的机制可能是双重的,这取决于嘌呤糖苷配基的芳香特性的平衡作用:首先,局部形成的9-鸟苷酸离子(pK_a 9.3,〜18-在pH 8时被离子化的20%N1)改变了易裂磷酸盐周围的糖磷酸主链,将其糖N / S构象平衡转变为优先S型,导致在中心周围5'-GpN-3'位发生优先切割20聚体互补mRNA。其次,较弱的5'-Pu-p-Py-3'堆积近邻强度促进了优先的5'-GpN-3'和5'-ApN-3'裂解,提供了约90%的总产物由于天然的cLNA / LNA取代基对相邻的5'-Pu-p-Py-3'位点有影响,因此具有约50%的天然空间柔韧性和额外的水合作用。这促进了在切割位点处的水和水/ Mg〜(2+)离子的可用性,从而导致了易裂磷酸盐的磷酸二酯键的序列特异性水解。这项工作提出,将互补mRNA链的总切割速率提高多达25%,这为在适当取代的AONs中工程改造单个修饰位点提供了机会,从而可以基于AON的溶核稳定性设计有效的反义策略。链对RNase H切割互补RNA链的能力。

著录项

  • 来源
    《Molecular BioSystems》 |2017年第5期|921-938|共18页
  • 作者单位

    Chemical Biology Program, Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Box 581, SE-751 23 Uppsala, Sweden.;

    Chemical Biology Program, Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Box 581, SE-751 23 Uppsala, Sweden.;

    Chemical Biology Program, Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Box 581, SE-751 23 Uppsala, Sweden.;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号