...
首页> 外文期刊>Molecular Biology and Evolution >Evolution of Elongation Factor G and the Origins of Mitochondrial and Chloroplast Forms
【24h】

Evolution of Elongation Factor G and the Origins of Mitochondrial and Chloroplast Forms

机译:延伸因子G的演变以及线粒体和叶绿体形式的起源

获取原文
获取原文并翻译 | 示例

摘要

Protein synthesis elongation factor G (EF-G) is an essential protein with central roles in both the elongation and ribosome recycling phases of protein synthesis. Although EF-G evolution is predicted to be conservative, recent reports suggest otherwise. We have characterized EF-G in terms of its molecular phylogeny, genomic context, and patterns of amino acid substitution. We find that most bacteria carry a single “canonical” EF-G, which is phylogenetically conservative and encoded in an str operon. However, we also find a number of EF-G paralogs. These include a pair of EF-Gs that are mostly found together and in an eclectic subset of bacteria, specifically δ-proteobacteria, spirochaetes, and planctomycetes (the “spd” bacteria). These spdEFGs have also given rise to the mitochondrial factors mtEFG1 and mtEFG2, which probably arrived in eukaryotes before the eukaryotic last common ancestor. Meanwhile, chloroplasts apparently use an α-proteobacterial–derived EF-G rather than the expected cyanobacterial form. The long-term comaintenance of the spd/mtEFGs may be related to their subfunctionalization for translocation and ribosome recycling. Consistent with this, patterns of sequence conservation and site-specific evolutionary rate shifts suggest that the faster evolving spd/mtEFG2 has lost translocation function, but surprisingly, the protein also shows little conservation of sites related to recycling activity. On the other hand, spd/mtEFG1, although more slowly evolving, shows signs of substantial remodeling. This is particularly extensive in the GTPase domain, including a highly conserved three amino acid insertion in switch I. We suggest that subfunctionalization of the spd/mtEFGs is not a simple case of specialization for subsets of original activities. Rather, the duplication allows the release of one paralog from the selective constraints imposed by dual functionality, thus allowing it to become more highly specialized. Thus, the potential for fine tuning afforded by subfunctionalization may explain the maintenance of EF-G paralogs.
机译:蛋白质合成延伸因子G(EF-G)是必需的蛋白质,在蛋白质合成的延伸和核糖体回收阶段均起着核心作用。尽管预计EF-G的进化是保守的,但最近的报道却相反。我们已经从EF-G的分子系统发育,基因组背景和氨基酸取代模式方面对其进行了表征。我们发现大多数细菌携带单个“规范” EF-G,它在系统发育上是保守的,并编码于操纵子中。但是,我们也发现了许多EF-G旁系同源物。这些包括一对EF-G,它们大部分在一起存在,并且存在于折衷的细菌子集中,尤其是δ-变形杆菌,螺旋体和扁平菌(“ spd”细菌)。这些spdEFG也引起了线粒体因子mtEFG1和mtEFG2,它们可能在真核生物的最后共同祖先之前到达了真核生物。同时,叶绿体显然使用源自α-变形细菌的EF-G,而不是预期的蓝细菌形式。 spd / mtEFG的长期共维护可能与其易位性和转运核糖体有关。与此相一致的是,序列保守和位点特异性进化速率变化的模式表明,较快进化的spd / mtEFG2已失去转运功能,但令人惊讶的是,该蛋白质也几乎没有显示与循环活性相关的位点。另一方面,尽管spd / mtEFG1的发展较慢,但仍显示出实质性重塑的迹象。这在GTPase域中尤其广泛,包括在开关I中高度保守的三个氨基酸插入。我们建议spd / mtEFGs的亚功能化不是专门化原始活动子集的简单情况。而是,复制允许从双重功能施加的选择性约束中释放一个旁系同源物,从而使其变得更加高度专业化。因此,亚功能化提供的微调潜力可能解释了EF-G旁系同源物的维持。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号