首页> 外文期刊>Mine water and the environment >Passive Treatment of Neutral Mine Drainage at a Metal Mine in New Zealand Using an Oxidizing System and Slag Leaching Bed
【24h】

Passive Treatment of Neutral Mine Drainage at a Metal Mine in New Zealand Using an Oxidizing System and Slag Leaching Bed

机译:氧化系统和矿渣浸滤床对新西兰金属矿中性矿山排水的被动处理

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Rehabilitation at a metal mine in New Zealand is complete with the exception of a 22 L/s discharge pumped from underground. The discharge has a pH of a parts per thousand 6, alkalinity of a parts per thousand 150 mg/L, dissolved oxygen (DO) < 1 mg/L, elevated Fe and Mn, as well as elevated concentrations of Zn and As. Planning passive treatment was difficult because historical total Fe ranged from 20 to 200 mg/L, and Mn (11-22 mg/L) is soluble in the circumneutral pH range, due to conditions in the workings. Speciation analysis and modelling of the mine drainage chemistry indicated four factors were important for passive treatment design: (1) dissolved Fe is a parts per thousand 20 mg/L and all is dissolved Fe(II); (2) Fe(II) concentration is stable because it is limited by saturation with respect to siderite (FeCO3); (3) the remaining Fe is colloidal Fe(OH)(3) with a variable concentration; and (4) Mn is limited by saturation with respect to rhodochrosite (MnCO3). Equilibrium of Fe and Mn with minerals means that dissolved concentrations have an upper limit and are relatively stable, allowing an optimized treatment system. A pilot-scale passive treatment system was installed that included an oxygenation cascade of drops through V-notch weirs, settling ponds, and a slag leaching bed. Oxidation of Fe(II) to Fe(III) was followed by precipitation and settling of Fe(OH)(3). Bicarbonate alkalinity in the mine drainage prevented acidification, and release of dissolved CO2 caused the pH to increase slightly. Manganese was removed by precipitation (of carbonates, oxides or oxy-hydroxides) in the slag leaching bed at elevated pH and high DO. Zinc and As were removed by adsorption onto Fe(OH)(3). The oxygenation system removed 82-96 % of the Fe and 10 % of the Mn. The slag leaching bed removed 99 % of the remaining Mn.
机译:除了从地下抽出的22升/秒的排放量外,新西兰金属矿场的修复工作已经完成。放电的pH值为千分之六,碱度为千分之150 mg / L,溶解氧(DO)<1 mg / L,Fe和Mn升高以及Zn和As浓度升高。计划被动处理是困难的,因为由于工作条件的原因,历史总铁含量在20至200 mg / L之间,而Mn(11-22 mg / L)可溶于周围pH范围。矿山排水化学的形态分析和建模表明,四个因素对于被动处理设计很重要:(1)溶解的铁为千分之20 20 mg / L,全部溶解的Fe(II); (2)由于受菱铁矿(FeCO3)饱和度的限制,Fe(II)浓度稳定。 (3)其余的Fe是浓度可变的胶体Fe(OH)(3); (4)Mn相对于菱锰矿(MnCO 3)受到饱和度的限制。 Fe和Mn与矿物质的平衡意味着溶解浓度具有上限并且相对稳定,从而可以优化处理系统。安装了中试规模的被动处理系统,该系统包括通过V型槽堰,沉降池和矿渣浸滤床的液滴的氧化级联。 Fe(II)氧化为Fe(III),然后沉淀并沉淀Fe(OH)(3)。矿井排水中的碳酸氢盐碱度阻止了酸化,溶解的CO2的释放导致pH值略有增加。在升高的pH和高DO下,通过在渣浸滤床中沉淀(碳酸盐,氧化物或羟基氧化物)来除去锰。通过吸附到Fe(OH)(3)上除去锌和As。氧化系统除去了82-96%的Fe和10%的Mn。渣浸出床除去了99%的剩余Mn。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号